/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* multicopter frame simulator class */ #include "SIM_Frame.h" #include <AP_Motors/AP_Motors.h> #include <AP_Baro/AP_Baro.h> #include <AP_Filesystem/AP_Filesystem.h> #include <stdio.h> #include <sys/stat.h> #include "picojson.h" using namespace SITL; static Motor quad_plus_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), }; static Motor quad_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), }; // motor order to match betaflight conventions // See: https://fpvfrenzy.com/betaflight-motor-order/ static Motor quad_bf_x_motors[] = { Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,1), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), }; // motor order to match betaflight conventions, reversed direction static Motor quad_bf_x_rev_motors[] = { Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), }; // motor order to match DJI conventions // See: https://forum44.djicdn.com/data/attachment/forum/201711/26/172348bppvtt1ot1nrtp5j.jpg static Motor quad_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), }; // motor order so that test order matches motor order ("clockwise X") static Motor quad_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), }; static Motor tiltquad_h_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, -1, 0, 0, 7, 10, -90), }; static Motor hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor hexax_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4) }; static Motor hexa_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_3, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_6, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2) }; static Motor hexa_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6) }; static Motor octa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor octa_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_3, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_4, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_7, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_8, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2) }; static Motor octa_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8) }; static Motor octa_quad_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6) }; static Motor octa_quad_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8) }; static Motor dodeca_hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_9, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10), Motor(AP_MOTORS_MOT_11, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11), Motor(AP_MOTORS_MOT_12, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12) }; static Motor deca_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_9, -72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10) }; static Motor deca_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 18, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 54, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 126, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 162, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -162, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -126, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_9, -54, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -18, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10) }; static Motor tri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2) }; static Motor y6_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3) }; /* FireflyY6 is a Y6 with front motors tiltable using servo on channel 9 (output 8) */ static Motor firefly_motors[] = { Motor(AP_MOTORS_MOT_1, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_2, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_6, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6, -1, 0, 0, 6, 0, -90) }; /* table of supported frame types. String order is important for partial name matching */ static Frame supported_frames[] = { Frame("+", 4, quad_plus_motors), Frame("quad", 4, quad_plus_motors), Frame("copter", 4, quad_plus_motors), Frame("x", 4, quad_x_motors), Frame("bfxrev", 4, quad_bf_x_rev_motors), Frame("bfx", 4, quad_bf_x_motors), Frame("djix", 4, quad_dji_x_motors), Frame("cwx", 4, quad_cw_x_motors), Frame("tilthvec", 4, tiltquad_h_vectored_motors), Frame("hexax", 6, hexax_motors), Frame("hexa-cwx", 6, hexa_cw_x_motors), Frame("hexa-dji", 6, hexa_dji_x_motors), Frame("hexa", 6, hexa_motors), Frame("octa-cwx", 8, octa_cw_x_motors), Frame("octa-dji", 8, octa_dji_x_motors), Frame("octa-quad-cwx",8, octa_quad_cw_x_motors), Frame("octa-quad", 8, octa_quad_motors), Frame("octa", 8, octa_motors), Frame("deca", 10, deca_motors), Frame("deca-cwx", 10, deca_cw_x_motors), Frame("dodeca-hexa", 12, dodeca_hexa_motors), Frame("tri", 3, tri_motors), Frame("tilttrivec",3, tilttri_vectored_motors), Frame("tilttri", 3, tilttri_motors), Frame("y6", 6, y6_motors), Frame("firefly", 6, firefly_motors) }; // get air density in kg/m^3 float Frame::get_air_density(float alt_amsl) const { float sigma, delta, theta; AP_Baro::SimpleAtmosphere(alt_amsl * 0.001f, sigma, delta, theta); const float air_pressure = SSL_AIR_PRESSURE * delta; return air_pressure / (ISA_GAS_CONSTANT * (C_TO_KELVIN + model.refTempC)); } /* load frame specific parameters from a json file if available */ void Frame::load_frame_params(const char *model_json) { char *fname = nullptr; struct stat st; if (AP::FS().stat(model_json, &st) == 0) { fname = strdup(model_json); } else { IGNORE_RETURN(asprintf(&fname, "@ROMFS/models/%s", model_json)); if (AP::FS().stat(model_json, &st) != 0) { AP_HAL::panic("%s failed to load\n", model_json); } } if (fname == nullptr) { AP_HAL::panic("%s failed to load\n", model_json); } ::printf("Loading model %s\n", fname); int fd = AP::FS().open(model_json, O_RDONLY); if (fd == -1) { AP_HAL::panic("%s failed to load\n", model_json); } char buf[st.st_size+1]; memset(buf, '\0', sizeof(buf)); if (AP::FS().read(fd, buf, st.st_size) != st.st_size) { AP_HAL::panic("%s failed to load\n", model_json); } AP::FS().close(fd); char *start = strchr(buf, '{'); if (!start) { AP_HAL::panic("Invalid json %s", model_json); } free(fname); /* remove comments, as not allowed by the parser */ for (char *p = strchr(start,'#'); p; p=strchr(p+1, '#')) { // clear to end of line do { *p++ = ' '; } while (*p != '\n' && *p != '\r' && *p); } picojson::value obj; std::string err = picojson::parse(obj, start); if (!err.empty()) { AP_HAL::panic("Failed to load %s: %s", model_json, err.c_str()); exit(1); } struct { const char *label; float &v; } vars[] = { #define FRAME_VAR(s) { #s, model.s } FRAME_VAR(mass), FRAME_VAR(diagonal_size), FRAME_VAR(refSpd), FRAME_VAR(refAngle), FRAME_VAR(refVoltage), FRAME_VAR(refCurrent), FRAME_VAR(refAlt), FRAME_VAR(refTempC), FRAME_VAR(maxVoltage), FRAME_VAR(battCapacityAh), FRAME_VAR(refBatRes), FRAME_VAR(propExpo), FRAME_VAR(refRotRate), FRAME_VAR(hoverThrOut), FRAME_VAR(pwmMin), FRAME_VAR(pwmMax), FRAME_VAR(spin_min), FRAME_VAR(spin_max), FRAME_VAR(slew_max), FRAME_VAR(disc_area), FRAME_VAR(mdrag_coef), }; static_assert(sizeof(model) == sizeof(float)*ARRAY_SIZE(vars), "incorrect model vars"); for (uint8_t i=0; i<ARRAY_SIZE(vars); i++) { auto v = obj.get(vars[i].label); if (v.is<picojson::null>()) { // use default value continue; } if (!v.is<double>()) { AP_HAL::panic("Bad json type for %s: %s", vars[i].label, v.to_str().c_str()); } vars[i].v = v.get<double>(); } ::printf("Loaded model params from %s\n", model_json); } /* initialise the frame */ void Frame::init(const char *frame_str, Battery *_battery) { model = default_model; battery = _battery; const char *colon = strchr(frame_str, ':'); size_t slen = strlen(frame_str); if (colon != nullptr && slen > 5 && strcmp(&frame_str[slen-5], ".json") == 0) { load_frame_params(colon+1); } mass = model.mass; const float drag_force = model.mass * GRAVITY_MSS * tanf(radians(model.refAngle)); const float cos_tilt = cosf(radians(model.refAngle)); const float airspeed_bf = model.refSpd * cos_tilt; const float ref_thrust = model.mass * GRAVITY_MSS / cos_tilt; float ref_air_density = get_air_density(model.refAlt); const float momentum_drag = cos_tilt * model.mdrag_coef * airspeed_bf * sqrtf(ref_thrust * ref_air_density * model.disc_area); if (momentum_drag > drag_force) { model.mdrag_coef *= drag_force / momentum_drag; areaCd = 0.0; ::printf("Suggested EK3_BCOEF_* = 0, EK3_MCOEF = %.3f\n", (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density)); } else { areaCd = (drag_force - momentum_drag) / (0.5f * ref_air_density * sq(model.refSpd)); ::printf("Suggested EK3_BCOEF_* = %.3f, EK3_MCOEF = %.3f\n", model.mass / areaCd, (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density)); } terminal_rotation_rate = model.refRotRate; float hover_thrust = mass * GRAVITY_MSS; float hover_power = model.refCurrent * model.refVoltage; float hover_velocity_out = 2 * hover_power / hover_thrust; float effective_disc_area = hover_thrust / (0.5 * ref_air_density * sq(hover_velocity_out)); velocity_max = hover_velocity_out / sqrtf(model.hoverThrOut); thrust_max = 0.5 * ref_air_density * effective_disc_area * sq(velocity_max); effective_prop_area = effective_disc_area / num_motors; // power_factor is ratio of power consumed per newton of thrust float power_factor = hover_power / hover_thrust; battery->setup(model.battCapacityAh, model.refBatRes, model.maxVoltage); for (uint8_t i=0; i<num_motors; i++) { motors[i].setup_params(model.pwmMin, model.pwmMax, model.spin_min, model.spin_max, model.propExpo, model.slew_max, model.mass, model.diagonal_size, power_factor, model.maxVoltage); } #if 0 // useful debug code for thrust curve { motors[0].set_slew_max(0); struct sitl_input input {}; for (uint16_t pwm = 1000; pwm < 2000; pwm += 50) { input.servos[0] = pwm; Vector3f rot_accel {}, thrust {}; Vector3f vel_air_bf {}; motors[0].calculate_forces(input, motor_offset, rot_accel, thrust, vel_air_bf, ref_air_density, velocity_max, effective_prop_area, battery->get_voltage()); ::printf("pwm[%u] cmd=%.3f thrust=%.3f hovthst=%.3f\n", pwm, motors[0].pwm_to_command(pwm), -thrust.z*num_motors, hover_thrust); } motors[0].set_slew_max(model.slew_max); } #endif // setup reasonable defaults for battery AP_Param::set_default_by_name("SIM_BATT_VOLTAGE", model.maxVoltage); AP_Param::set_default_by_name("SIM_BATT_CAP_AH", model.battCapacityAh); AP_Param::set_default_by_name("BATT_CAPACITY", model.battCapacityAh*1000); } /* find a frame by name */ Frame *Frame::find_frame(const char *name) { for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) { // do partial name matching to allow for frame variants if (strncasecmp(name, supported_frames[i].name, strlen(supported_frames[i].name)) == 0) { return &supported_frames[i]; } } return nullptr; } // calculate rotational and linear accelerations void Frame::calculate_forces(const Aircraft &aircraft, const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel, float* rpm, bool use_drag) { Vector3f thrust; // newtons const float air_density = get_air_density(aircraft.get_location().alt*0.01); Vector3f vel_air_bf = aircraft.get_dcm().transposed() * aircraft.get_velocity_air_ef(); float current = 0; for (uint8_t i=0; i<num_motors; i++) { Vector3f mraccel, mthrust; motors[i].calculate_forces(input, motor_offset, mraccel, mthrust, vel_air_bf, air_density, velocity_max, effective_prop_area, battery->get_voltage()); current += motors[i].get_current(); rot_accel += mraccel; thrust += mthrust; // simulate motor rpm if (!is_zero(AP::sitl()->vibe_motor)) { rpm[i] = motors[i].get_command() * AP::sitl()->vibe_motor * 60.0f; } } body_accel = thrust/aircraft.gross_mass(); if (terminal_rotation_rate > 0) { // rotational air resistance const Vector3f &gyro = aircraft.get_gyro(); rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; } if (use_drag) { // use the model params to calculate drag Vector3f drag_bf; drag_bf.x = areaCd * 0.5f * air_density * sq(vel_air_bf.x) + model.mdrag_coef * fabsf(vel_air_bf.x) * sqrtf(fabsf(thrust.z) * air_density * model.disc_area); if (is_positive(vel_air_bf.x)) { drag_bf.x = -drag_bf.x; } drag_bf.y = areaCd * 0.5f * air_density * sq(vel_air_bf.y) + model.mdrag_coef * fabsf(vel_air_bf.y) * sqrtf(fabsf(thrust.z) * air_density * model.disc_area); if (is_positive(vel_air_bf.y)) { drag_bf.y = -drag_bf.y; } // The application of momentum drag to the Z axis is a 'hack' to compensate for incorrect modelling // of the variation of thust with vel_air_bf.z in SIM_Motor.cpp. If nmot applied, the vehicle will // climb at an unrealistic rate during operation in STABILIZE. TODO replace prop and motor model in // the Motor class with one based on DC motor, mometum disc and blade elemnt theory. drag_bf.z = areaCd * 0.5f * air_density * sq(vel_air_bf.z) + model.mdrag_coef * fabsf(vel_air_bf.z) * sqrtf(fabsf(thrust.z) * air_density * model.disc_area); if (is_positive(vel_air_bf.z)) { drag_bf.z = -drag_bf.z; } body_accel += drag_bf / mass; } // add some noise const float gyro_noise = radians(0.1); const float accel_noise = 0.3; const float noise_scale = thrust.length() / thrust_max; rot_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * gyro_noise * noise_scale; body_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * accel_noise * noise_scale; } // calculate current and voltage void Frame::current_and_voltage(float &voltage, float ¤t) { float param_voltage = AP::sitl()->batt_voltage; if (!is_equal(last_param_voltage,param_voltage)) { battery->init_voltage(param_voltage); last_param_voltage = param_voltage; } voltage = battery->get_voltage(); current = 0; for (uint8_t i=0; i<num_motors; i++) { current += motors[i].get_current(); } }