#pragma once /// @file AC_P_1D.h /// @brief Generic P controller, with EEPROM-backed storage of constants. #include <AP_Common/AP_Common.h> #include <AP_Param/AP_Param.h> /// @class AC_P_1D /// @brief Object managing one P controller class AC_P_1D { public: // constructor AC_P_1D(float initial_p, float dt); CLASS_NO_COPY(AC_P_1D); // set time step in seconds void set_dt(float dt) { _dt = dt; } // update_all - set target and measured inputs to P controller and calculate outputs // target and measurement are filtered float update_all(float &target, float measurement) WARN_IF_UNUSED; // set_limits - sets the maximum error to limit output and first and second derivative of output void set_limits(float output_min, float output_max, float D_Out_max = 0.0f, float D2_Out_max = 0.0f); // set_error_limits - reduce maximum position error to error_max // to be called after setting limits void set_error_limits(float error_min, float error_max); // get_error_min - return minimum position error float get_error_min() const { return _error_min; } // get_error_max - return maximum position error float get_error_max() const { return _error_max; } // save gain to eeprom void save_gains() { _kp.save(); } // accessors AP_Float &kP() WARN_IF_UNUSED { return _kp; } const AP_Float &kP() const WARN_IF_UNUSED { return _kp; } float get_error() const { return _error; } // set accessors void kP(float v) { _kp.set(v); } // parameter var table static const struct AP_Param::GroupInfo var_info[]; private: // parameters AP_Float _kp; // internal variables float _dt; // time step in seconds float _error; // time step in seconds float _error_min; // error limit in negative direction float _error_max; // error limit in positive direction float _D1_max; // maximum first derivative of output };