/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; using namespace HALSITL; void SITL_State::_set_param_default(const char *parm) { char *pdup = strdup(parm); char *p = strchr(pdup, '='); if (p == NULL) { printf("Please specify parameter as NAME=VALUE"); exit(1); } float value = atof(p+1); *p = 0; enum ap_var_type var_type; AP_Param *vp = AP_Param::find(parm, &var_type); if (vp == NULL) { printf("Unknown parameter %s\n", parm); exit(1); } if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT32) { ((AP_Int32 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT16) { ((AP_Int16 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT8) { ((AP_Int8 *)vp)->set_and_save(value); } else { printf("Unable to set parameter %s\n", parm); exit(1); } printf("Set parameter %s to %f\n", parm, value); free(pdup); } /* setup for SITL handling */ void SITL_State::_sitl_setup(void) { #ifndef __CYGWIN__ _parent_pid = getppid(); #endif _rcout_addr.sin_family = AF_INET; _rcout_addr.sin_port = htons(_rcout_port); inet_pton(AF_INET, _fdm_address, &_rcout_addr.sin_addr); #ifndef HIL_MODE _setup_fdm(); #endif fprintf(stdout, "Starting SITL input\n"); // find the barometer object if it exists _sitl = (SITL *)AP_Param::find_object("SIM_"); _barometer = (AP_Baro *)AP_Param::find_object("GND_"); _ins = (AP_InertialSensor *)AP_Param::find_object("INS_"); _compass = (Compass *)AP_Param::find_object("COMPASS_"); _terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_"); _optical_flow = (OpticalFlow *)AP_Param::find_object("FLOW"); if (_sitl != NULL) { // setup some initial values #ifndef HIL_MODE _update_barometer(100); _update_ins(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0, 100); _update_compass(0, 0, 0); _update_gps(0, 0, 0, 0, 0, 0, false); #endif if (enable_gimbal) { gimbal = new Gimbal(_sitl->state); } } if (_synthetic_clock_mode) { // start with non-zero clock hal.scheduler->stop_clock(1); } } #ifndef HIL_MODE /* setup a SITL FDM listening UDP port */ void SITL_State::_setup_fdm(void) { int one=1, ret; struct sockaddr_in sockaddr; memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(_simin_port); sockaddr.sin_family = AF_INET; _sitl_fd = socket(AF_INET, SOCK_DGRAM, 0); if (_sitl_fd == -1) { fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ setsockopt(_sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); ret = bind(_sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "SITL: bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } HALSITL::SITLUARTDriver::_set_nonblocking(_sitl_fd); } #endif /* step the FDM by one time step */ void SITL_State::_fdm_input_step(void) { static uint32_t last_pwm_input = 0; fd_set fds; struct timeval tv; if (sitl_model != NULL) { _fdm_input_local(); } else { tv.tv_sec = 1; tv.tv_usec = 0; FD_ZERO(&fds); FD_SET(_sitl_fd, &fds); if (select(_sitl_fd+1, &fds, NULL, NULL, &tv) != 1) { // internal error _simulator_output(true); return; } /* check for packet from flight sim */ _fdm_input(); } /* make sure we die if our parent dies */ if (kill(_parent_pid, 0) != 0) { exit(1); } if (_scheduler->interrupts_are_blocked() || _sitl == NULL) { return; } // simulate RC input at 50Hz if (hal.scheduler->millis() - last_pwm_input >= 20 && _sitl->rc_fail == 0) { last_pwm_input = hal.scheduler->millis(); new_rc_input = true; } _scheduler->sitl_begin_atomic(); if (_update_count == 0 && _sitl != NULL) { _update_gps(0, 0, 0, 0, 0, 0, false); _update_barometer(0); _scheduler->timer_event(); _scheduler->sitl_end_atomic(); return; } if (_sitl != NULL) { _update_gps(_sitl->state.latitude, _sitl->state.longitude, _sitl->state.altitude, _sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD, !_sitl->gps_disable); _update_ins(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg, _sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate, _sitl->state.xAccel, _sitl->state.yAccel, _sitl->state.zAccel, _sitl->state.airspeed, _sitl->state.altitude); _update_barometer(_sitl->state.altitude); _update_compass(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg); _update_flow(); } // trigger all APM timers. _scheduler->timer_event(); _scheduler->sitl_end_atomic(); } void SITL_State::wait_clock(uint64_t wait_time_usec) { while (hal.scheduler->micros64() < wait_time_usec) { _fdm_input_step(); } } #ifndef HIL_MODE /* check for a SITL FDM packet */ void SITL_State::_fdm_input(void) { ssize_t size; struct pwm_packet { uint16_t pwm[8]; }; union { struct sitl_fdm fg_pkt; struct pwm_packet pwm_pkt; } d; bool got_fg_input = false; size = recv(_sitl_fd, &d, sizeof(d), MSG_DONTWAIT); switch (size) { case 148: static uint32_t last_report; static uint32_t count; if (d.fg_pkt.magic != 0x4c56414f) { fprintf(stdout, "Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic); return; } if (d.fg_pkt.latitude == 0 || d.fg_pkt.longitude == 0 || d.fg_pkt.altitude <= 0) { // garbage input return; } hal.scheduler->stop_clock(d.fg_pkt.timestamp_us); _synthetic_clock_mode = true; got_fg_input = true; if (_sitl != NULL) { _sitl->state = d.fg_pkt; // prevent bad inputs from SIM from corrupting our state double *v = &_sitl->state.latitude; for (uint8_t i=0; i<17; i++) { if (isinf(v[i]) || isnan(v[i]) || fabs(v[i]) > 1.0e10) { v[i] = 0; } } } _update_count++; count++; if (hal.scheduler->millis() - last_report > 1000) { //fprintf(stdout, "SIM %u FPS\n", count); count = 0; last_report = hal.scheduler->millis(); } break; case 16: { // a packet giving the receiver PWM inputs uint8_t i; for (i=0; i<8; i++) { // setup the pwn input for the RC channel inputs if (d.pwm_pkt.pwm[i] != 0) { pwm_input[i] = d.pwm_pkt.pwm[i]; } } break; } } if (got_fg_input) { // send RC output to flight sim _simulator_output(_synthetic_clock_mode); } } /* get FDM input from a local model */ void SITL_State::_fdm_input_local(void) { Aircraft::sitl_input input; // check for direct RC input _fdm_input(); // construct servos structure for FDM _simulator_servos(input); // update the model sitl_model->update(input); // get FDM output from the model sitl_model->fill_fdm(_sitl->state); if (gimbal != NULL) { gimbal->update(); } // update simulation time hal.scheduler->stop_clock(_sitl->state.timestamp_us); _synthetic_clock_mode = true; _update_count++; } #endif /* apply servo rate filtering This allows simulation of servo lag */ void SITL_State::_apply_servo_filter(float deltat) { if (_sitl->servo_rate < 1.0f) { // no limit return; } // 1000 usec == 90 degrees uint16_t max_change = deltat * _sitl->servo_rate * 1000 / 90; if (max_change == 0) { max_change = 1; } for (uint8_t i=0; i max_change) { pwm_output[i] = last_pwm_output[i] + max_change; } else if (change < -max_change) { pwm_output[i] = last_pwm_output[i] - max_change; } } } /* create sitl_input structure for sending to FDM */ void SITL_State::_simulator_servos(Aircraft::sitl_input &input) { static uint32_t last_update_usec; /* this maps the registers used for PWM outputs. The RC * driver updates these whenever it wants the channel output * to change */ uint8_t i; if (last_update_usec == 0) { for (i=0; imicros(); float deltat = (now - last_update_usec) * 1.0e-6f; last_update_usec = now; _apply_servo_filter(deltat); // pass wind into simulators, using a wind gradient below 60m float altitude = _barometer?_barometer->get_altitude():0; float wind_speed = _sitl->wind_speed; if (altitude < 0) { altitude = 0; } if (altitude < 60) { wind_speed *= altitude / 60; } input.wind.speed = wind_speed; input.wind.direction = _sitl->wind_direction; input.wind.turbulence = _sitl->wind_turbulance; for (i=0; i 1000) { input.servos[2] = ((input.servos[2]-1000) * _sitl->engine_mul) + 1000; if (input.servos[2] > 2000) input.servos[2] = 2000; } _motors_on = ((input.servos[2]-1000)/1000.0f) > 0; } else if (_vehicle == APMrover2) { // add in engine multiplier if (input.servos[2] != 1500) { input.servos[2] = ((input.servos[2]-1500) * _sitl->engine_mul) + 1500; if (input.servos[2] > 2000) input.servos[2] = 2000; if (input.servos[2] < 1000) input.servos[2] = 1000; } _motors_on = ((input.servos[2]-1500)/500.0f) != 0; } else { _motors_on = false; // apply engine multiplier to first motor input.servos[0] = ((input.servos[0]-1000) * _sitl->engine_mul) + 1000; // run checks on each motor for (i=0; i<4; i++) { // check motors do not exceed their limits if (input.servos[i] > 2000) input.servos[i] = 2000; if (input.servos[i] < 1000) input.servos[i] = 1000; // update motor_on flag if ((input.servos[i]-1000)/1000.0f > 0) { _motors_on = true; } } } float throttle = _motors_on?(input.servos[2]-1000) / 1000.0f:0; // lose 0.7V at full throttle float voltage = _sitl->batt_voltage - 0.7f*throttle; // assume 50A at full throttle _current = 50.0f * throttle; // assume 3DR power brick voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024; current_pin_value = ((_current / 17.0f) / 5.0f) * 1024; } /* send RC outputs to simulator */ void SITL_State::_simulator_output(bool synthetic_clock_mode) { struct { uint16_t pwm[SITL_NUM_CHANNELS]; uint16_t speed, direction, turbulance; } control; Aircraft::sitl_input input; _simulator_servos(input); if (_sitl == NULL) { return; } memcpy(control.pwm, input.servos, sizeof(control.pwm)); // setup wind control float wind_speed = _sitl->wind_speed * 100; float altitude = _barometer?_barometer->get_altitude():0; if (altitude < 0) { altitude = 0; } if (altitude < 60) { wind_speed *= altitude / 60.0f; } control.speed = wind_speed; float direction = _sitl->wind_direction; if (direction < 0) { direction += 360; } control.direction = direction * 100; control.turbulance = _sitl->wind_turbulance * 100; // zero the wind for the first 15s to allow pitot calibration if (hal.scheduler->millis() < 15000) { control.speed = 0; } sendto(_sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&_rcout_addr, sizeof(_rcout_addr)); } // generate a random float between -1 and 1 float SITL_State::_rand_float(void) { return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6; } // generate a random Vector3f of size 1 Vector3f SITL_State::_rand_vec3f(void) { Vector3f v = Vector3f(_rand_float(), _rand_float(), _rand_float()); if (v.length() != 0.0f) { v.normalize(); } return v; } void SITL_State::init(int argc, char * const argv[]) { pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500; pwm_input[4] = pwm_input[7] = 1800; pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000; _scheduler = (SITLScheduler *)hal.scheduler; _parse_command_line(argc, argv); } /* return height above the ground in meters */ float SITL_State::height_agl(void) { static float home_alt = -1; if (home_alt == -1 && _sitl->state.altitude > 0) { // remember home altitude as first non-zero altitude home_alt = _sitl->state.altitude; } if (_terrain && _sitl->terrain_enable) { // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; struct Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; if (_terrain->height_amsl(location, terrain_height_amsl)) { return _sitl->state.altitude - terrain_height_amsl; } } // fall back to flat earth model return _sitl->state.altitude - home_alt; } #endif