// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** void navigate() { // do not navigate with corrupt data // --------------------------------- if (GPS.fix == 0) { GPS.new_data = false; return; } if(next_WP.lat == 0){ return; } // waypoint distance from plane // ---------------------------- GPS_wp_distance = getDistance(¤t_loc, &next_WP); if (GPS_wp_distance < 0){ send_message(SEVERITY_HIGH," WP error - distance < 0"); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); // nav_bearing will includes xtrack correction // ------------------------------------------- nav_bearing = target_bearing; // control mode specific updates to nav_bearing // -------------------------------------------- update_navigation(); // calc pitch and roll to target // ----------------------------- calc_nav(); } #define DIST_ERROR_MAX 3000 void calc_nav() { /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m 3000 = 33m 10000 = 111m pitch_max = 22° (2200) */ Vector2f yawvector; Matrix3f temp = dcm.get_dcm_matrix(); yawvector.x = temp.a.x; yawvector.y = temp.b.x; yawvector.normalize(); // ROLL nav_lon = pid_nav_lon.get_pid((long)((float)(next_WP.lng - GPS.longitude) * scaleLongDown), dTnav, 1.0); nav_lon = constrain(nav_lon, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command // PITCH nav_lat = pid_nav_lat.get_pid(next_WP.lat - GPS.latitude, dTnav, 1.0); nav_lat = constrain(nav_lat, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command // rotate the vector nav_roll = (float)nav_lon * yawvector.x - (float)nav_lat * yawvector.y; nav_pitch = (float)nav_lon * yawvector.y + (float)nav_lat * yawvector.x; nav_roll = constrain(nav_roll, -pitch_max, pitch_max); nav_pitch = constrain(nav_pitch, -pitch_max, pitch_max); } /* void verify_missed_wp() { // check if we have missed the WP loiter_delta = (target_bearing - old_target_bearing) / 100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 170) loiter_delta -= 360; if (loiter_delta < -170) loiter_delta += 360; loiter_sum += abs(loiter_delta); } */ void calc_bearing_error() { bearing_error = nav_bearing - yaw_sensor; bearing_error = wrap_180(bearing_error); } void calc_distance_error() { wp_distance = GPS_wp_distance; // this wants to work only while moving, but it should filter out jumpy GPS reads // scale gs to whole deg (50hz / 100) scale bearing error down to whole deg //distance_estimate += (float)GPS.ground_speed * .0002 * cos(radians(bearing_error / 100)); //distance_estimate -= distance_gain * (float)(distance_estimate - GPS_wp_distance); //wp_distance = distance_estimate; } /*void calc_airspeed_errors() { //airspeed_error = airspeed_cruise - airspeed; //airspeed_energy_error = (long)(((long)airspeed_cruise * (long)airspeed_cruise) - ((long)airspeed * (long)airspeed))/20000; //Changed 0.00005f * to / 20000 to avoid floating point calculation } */ // calculated at 50 hz void calc_altitude_error() { if(control_mode == AUTO && offset_altitude != 0) { // limit climb rates - we draw a straight line between first location and edge of wp_radius target_altitude = next_WP.alt - ((wp_distance * offset_altitude) / (wp_totalDistance - wp_radius)); // stay within a certain range if(prev_WP.alt > next_WP.alt){ target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); }else{ target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); } } else { target_altitude = next_WP.alt; } altitude_error = target_altitude - current_loc.alt; //Serial.printf("s: %d %d t_alt %d\n", (int)current_loc.alt, (int)altitude_error, (int)target_altitude); } long wrap_360(long error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } long wrap_180(long error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } /* // disabled for now void update_loiter() { loiter_delta = (target_bearing - old_target_bearing) / 100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 170) loiter_delta -= 360; if (loiter_delta < -170) loiter_delta += 360; loiter_sum += loiter_delta; } */ void update_crosstrack(void) { // Crosstrack Error // ---------------- if (abs(target_bearing - crosstrack_bearing) < 4500) { // If we are too far off or too close we don't do track following crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line nav_bearing += constrain(crosstrack_error * x_track_gain, -x_track_angle, x_track_angle); nav_bearing = wrap_360(nav_bearing); } } void reset_crosstrack() { crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following } int get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } long getDistance(struct Location *loc1, struct Location *loc2) { if(loc1->lat == 0 || loc1->lng == 0) return -1; if(loc2->lat == 0 || loc2->lng == 0) return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } long get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } long get_bearing(struct Location *loc1, struct Location *loc2) { long off_x = loc2->lng - loc1->lng; long off_y = (loc2->lat - loc1->lat) * scaleLongUp; long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }