/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* helicopter simulator class */ #include "SIM_Helicopter.h" #include #include namespace SITL { Helicopter::Helicopter(const char *frame_str) : Aircraft(frame_str) { mass = 4.54f; if (strstr(frame_str, "-dual")) { frame_type = HELI_FRAME_DUAL; _time_delay = 30; nominal_rpm = 1300; mass = 9.08f; iyy = 0.2f; } else if (strstr(frame_str, "-compound")) { frame_type = HELI_FRAME_COMPOUND; _time_delay = 50; nominal_rpm = 1500; } else if (strstr(frame_str, "-blade360")) { frame_type = HELI_FRAME_BLADE360; _time_delay = 40; nominal_rpm = 2100; } else { frame_type = HELI_FRAME_CONVENTIONAL; _time_delay = 50; nominal_rpm = 1500; } /* For conventional and compound scaling from motor power to Newtons. Allows the copter to hover against gravity when the motor is at hover_throttle normalized to hover at 1500RPM at 5 deg collective. */ thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); // calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); // torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters. torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(nominal_rpm * 2.0f * M_PI / 60.0f); frame_height = 0.1; gas_heli = (strstr(frame_str, "-gas") != nullptr); ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT; lock_step_scheduled = true; motor_mask |= (1U<<0); } /* update the helicopter simulation by one time step */ void Helicopter::update(const struct sitl_input &input) { const float dt = frame_time_us * 1.0e-6f; // get wind vector setup update_wind(input); motor_interlock = input.servos[7] > 1400; float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1); float thrust = 0; float thrust_1 = 0; float thrust_2 = 0; float torque_effect_accel = 0; float lateral_x_thrust = 0; float lateral_y_thrust = 0; if (_time_delay == 0) { for (uint8_t i = 0; i < 6; i++) { _servos_delayed[i] = input.servos[i]; } } else if (servos_stored_buffer == nullptr) { uint16_t buffer_size = constrain_int16(_time_delay, 1, 100) * 0.001f / dt; servos_stored_buffer = new ObjectBuffer(buffer_size); while (servos_stored_buffer->space() != 0) { push_to_buffer(input.servos); } for (uint8_t i = 0; i < 6; i++) { _servos_delayed[i] = input.servos[i]; } } else { pull_from_buffer(_servos_delayed); push_to_buffer(input.servos); } float swash1 = (_servos_delayed[0]-1000) / 1000.0f; float swash2 = (_servos_delayed[1]-1000) / 1000.0f; float swash3 = (_servos_delayed[2]-1000) / 1000.0f; Vector3f rot_accel; switch (frame_type) { case HELI_FRAME_CONVENTIONAL: { // simulate a traditional helicopter float Ma1s = 617.5f; float Lb1s = 3588.6f; float Mu = 0.003f; float Lv = -0.006; float Xu = -0.125; float Yv = -0.375; float Zw = -0.375; float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); // determine RPM rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt); // Calculate rotor tip path plane angle float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); float yaw_cmd = 2.0f * tail_rotor - 1.0f; // convert range to -1 to 1 float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0]/nominal_rpm); float tail_rotor_thrust = -1.0f * tail_rotor_torque * izz / tr_dist; //right pedal produces left body accel // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; rot_accel.z = tail_rotor_torque - torque_effect_accel; lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); break; } case HELI_FRAME_BLADE360: { // simulate a Blade 360 helicopter. This model was taken from the following reference. // Walker, J, Tishler, M, "Identification and Control Design of a Sub-Scale Flybarless Helicopter", // Vertical Flight Society’s 77th Annual Forum & Technology Display, Virtual, May 10-14, 2021. float Ma1s = 796.7f; float Lb1s = 5115.2f; float Mu = 2.7501f; float Mv = -2.3039f; float Lu = -28.7796f; float Lv = -5.5376f; float Xu = -0.2270f; float Yv = -0.1852f; float Yp = 0.2303f; float Zw = -0.5910f; float Nr = -2.0131f; float Nw = 5.7574f; float Nv = 1.7258f; float Ncol = -32.4616f; float Nped = 63.0040f; float Zcol = -22.3239f; float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; // collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f); // determine RPM rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt); // Calculate rotor tip path plane angle float roll_cyclic = 1.283f * (swash1 - swash2); float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3); Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); float yaw_cmd = 1.45f * (2.0f * tail_rotor - 1.0f); // convert range to -1 to 1 // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lu * velocity_air_bf.x + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x + Mv * velocity_air_bf.y; rot_accel.z = Nv * velocity_air_bf.y + Nr * gyro.z + sq(rpm[0]/nominal_rpm) * Nped * yaw_cmd + Nw * velocity_air_bf.z + sq(rpm[0]/nominal_rpm) * Ncol * (coll - 0.5f); lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y + Yp * gyro.x - 3.2 * 0.01745 * GRAVITY_MSS; lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; float vertical_thrust = Zcol * coll * sq(rpm[0]/nominal_rpm) + velocity_air_bf.z * Zw; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, vertical_thrust); break; } case HELI_FRAME_DUAL: { float Ma1s = 617.5f; float Lb1s = 3588.6f; float Mu = 0.003f; float Lv = -0.006f; float Xu = -0.125f; float Yv = -0.375f; float Zw = -0.375f; float hub_dist = 1.8f; //meters float swash4 = (_servos_delayed[3]-1000) / 1000.0f; float swash5 = (_servos_delayed[4]-1000) / 1000.0f; float swash6 = (_servos_delayed[5]-1000) / 1000.0f; // Forward rotor is number 1 // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll_1 = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; // Calculate rotor tip path plane angle float roll_cyclic_1 = 1.283 * (swash1 - swash2) / cyclic_scalar; float pitch_cyclic_1 = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; Vector2f ctrl_pos_1 = Vector2f(roll_cyclic_1, pitch_cyclic_1); update_rotor_dynamics(gyro, ctrl_pos_1, _tpp_angle_1, dt); // Aft rotor is number 2 // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll_2 = 50.0f * (swash4+swash5+swash6) / 3.0f - 25.0f; // Calculate rotor tip path plane angle float roll_cyclic_2 = 1.283 * (swash4 - swash5) / cyclic_scalar; float pitch_cyclic_2 = 1.48 * ((swash4+swash5) / 2.0f - swash6) / cyclic_scalar; Vector2f ctrl_pos_2 = Vector2f(roll_cyclic_2, pitch_cyclic_2); update_rotor_dynamics(gyro, ctrl_pos_2, _tpp_angle_2, dt); // determine RPM rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, (coll_1 + coll_2) * 0.5f, dt); thrust_1 = 0.5f * thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll_1 - hover_coll) + hover_coll); thrust_2 = 0.5f * thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll_2 - hover_coll) + hover_coll); // rotational acceleration, in rad/s/s, in body frame rot_accel.x = (_tpp_angle_1.x + _tpp_angle_2.x) * Lb1s + Lv * velocity_air_bf.y; rot_accel.y = (_tpp_angle_1.y + _tpp_angle_2.y) * Ma1s + (thrust_1 - thrust_2) * hub_dist / iyy + Mu * velocity_air_bf.x; rot_accel.z = (_tpp_angle_1.x * thrust_1 - _tpp_angle_2.x * thrust_2) * hub_dist / (iyy * 2.0f) - 0.5f * gyro.z; lateral_y_thrust = GRAVITY_MSS * (_tpp_angle_1.x + _tpp_angle_2.x) + Yv * velocity_air_bf.y; lateral_x_thrust = -1.0f * GRAVITY_MSS * (_tpp_angle_1.y + _tpp_angle_2.y) + Xu * velocity_air_bf.x; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -(thrust_1 + thrust_2) / mass + velocity_air_bf.z * Zw); break; } case HELI_FRAME_COMPOUND: { // simulate a compound helicopter float Ma1s = 617.5f; float Lb1s = 3588.6f; float Mu = 0.003f; float Lv = -0.006; float Xu = -0.125; float Yv = -0.375; float Zw = -0.375; // thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); // determine RPM rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt); // Calculate rotor tip path plane angle float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); // Calculate thruster yaw and forward thrust effects // Thruster command range -1 to 1. Positive is forward thrust for both float right_thruster_cmd = 2.0f * (_servos_delayed[3]-1000) / 1000.0f - 1.0f; float left_thruster_cmd = 2.0f * (_servos_delayed[4]-1000) / 1000.0f - 1.0f; // assume torque from each thruster only half of normal tailrotor since thrusters 1/2 distance from cg float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); float right_thruster_force = -1.0f * right_thruster_torque * izz / (0.5f * tr_dist); float left_thruster_force = left_thruster_torque * izz / (0.5f * tr_dist); // rotational acceleration, in rad/s/s, in body frame rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; rot_accel.z = right_thruster_torque + left_thruster_torque - torque_effect_accel; lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); break; } } update_dynamics(rot_accel); update_external_payload(input); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt) { float tf_inv; float Lfa1s; float Mfb1s; float Lflt; float Lflg; float Mflt; float Mflg; if (frame_type == HELI_FRAME_BLADE360) { tf_inv = 1.0f / 0.0353f; Lfa1s = 1.0477f; Mfb1s = -1.0057f; Lflt = 0.2375f; Lflg = -0.0286f; Mflt = 0.0344f; Mflg = 0.2292f; } else if (frame_type == HELI_FRAME_DUAL) { // remove coupling in rotor tf_inv = 1.0f / 0.068232f; Lfa1s = 0.0f; Mfb1s = 0.0f; Lflt = 1.7635f; Lflg = 0.0f; Mflt = 0.0f; Mflg = 1.9432f; } else { tf_inv = 1.0f / 0.068232f; Lfa1s = 1.2963f; Mfb1s = -1.3402f; Lflt = 1.7635f; Lflg = -0.61171f; Mflt = 0.52454f; Mflg = 1.9432f; } float b1s_dot = -1 * gyro.x - tf_inv * tpp_angle.x + tf_inv * (Lfa1s * tpp_angle.y + Lflt * ctrl_pos.x + Lflg * ctrl_pos.y); float a1s_dot = -1 * gyro.y - tf_inv * tpp_angle.y + tf_inv * (Mfb1s * tpp_angle.x + Mflt * ctrl_pos.x + Mflg * ctrl_pos.y); tpp_angle.x += b1s_dot * dt; tpp_angle.y += a1s_dot * dt; } float Helicopter::update_rpm(float curr_rpm, float throttle, float &engine_torque, float collective, float dt) { static float rotor_runup_output; static uint8_t motor_status; if (throttle > 0.25) { motor_status = 3; // throttle unlimited } else if (motor_status == 3 && throttle <= 0.25 && throttle > 0.15) { motor_status = 2; // autorotational window } else if (throttle <= 0.15) { motor_status = 1; // idle } float runup_time = 8.0f; if (motor_status == 2) { runup_time = 2.0f; } float accel_scale = 100.0f; // ramp speed estimate towards control out float runup_increment = dt / runup_time; if (motor_status > 2) { if (rotor_runup_output < 1.0f) { rotor_runup_output += runup_increment; } else { rotor_runup_output = 1.0f; } if (curr_rpm < nominal_rpm - 25.0f) { accel_scale = 2000.0f / runup_time; } }else{ if (rotor_runup_output > 0.0f) { rotor_runup_output -= runup_increment * 10.0f; // make ramp down 10 times faster } else { rotor_runup_output = 0.0f; } } float input_torque = 0.0f; // calculate engine torque just for start up and shutdown of rotor engine_torque = accel_scale * rotor_runup_output * torque_mpog * sq(nominal_rpm * 2.0f * M_PI / 60.0f) / izz; // Calculate autorotation effect on rotor float auto_ss_torque = accel_scale * sq(nominal_rpm * 0.104667f) * torque_mpog / izz; float descent_torque = (velocity_air_bf.z - 7.0) * auto_ss_torque / 7.0f + auto_ss_torque; // manage input torque so descent torque combined with engine torque doesn't allow rotor to overspeed if (rotor_runup_output >= 1.0f && curr_rpm > nominal_rpm - 25.0f) { input_torque = engine_torque; } else if (rotor_runup_output <= 0.0f) { input_torque = descent_torque; } else { input_torque = engine_torque + descent_torque; } float rpm_dot = 0.0f; if (rotor_runup_output <= 0.0f && curr_rpm < 300) { rpm_dot = - 40.0f; if (curr_rpm <= 0.0f) { return 0.0f; } } else { rpm_dot = input_torque - (sq(curr_rpm * 0.104667f) * (accel_scale * torque_mpog )) / izz; } // Calculate main rotor torque effect on body to include thrust effects to determine tail rotor thrust engine_torque = sq(nominal_rpm * 0.104667f) * rotor_runup_output * (torque_mpog + torque_scale * fabsf(collective)) / izz; return curr_rpm + rpm_dot * dt; } // push servo input to buffer void Helicopter::push_to_buffer(const uint16_t servos_input[16]) { servos_stored sample; sample.servo1 = servos_input[0]; sample.servo2 = servos_input[1]; sample.servo3 = servos_input[2]; sample.servo4 = servos_input[3]; sample.servo5 = servos_input[4]; sample.servo6 = servos_input[5]; servos_stored_buffer->push(sample); } // pull servo delay from buffer void Helicopter::pull_from_buffer(uint16_t servos_delayed[6]) { servos_stored sample; if (!servos_stored_buffer->pop(sample)) { // no sample return; } servos_delayed[0] = sample.servo1; servos_delayed[1] = sample.servo2; servos_delayed[2] = sample.servo3; servos_delayed[3] = sample.servo4; servos_delayed[4] = sample.servo5; servos_delayed[5] = sample.servo6; } } // namespace SITL