/* * vector3.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma GCC optimize("O2") #include "AP_Math.h" #include <AP_InternalError/AP_InternalError.h> // rotate a vector by a standard rotation, attempting // to use the minimum number of floating point operations template <typename T> void Vector3<T>::rotate(enum Rotation rotation) { T tmp; switch (rotation) { case ROTATION_NONE: return; case ROTATION_YAW_45: { tmp = HALF_SQRT_2*(ftype)(x - y); y = HALF_SQRT_2*(ftype)(x + y); x = tmp; return; } case ROTATION_YAW_90: { tmp = x; x = -y; y = tmp; return; } case ROTATION_YAW_135: { tmp = -HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(x - y); x = tmp; return; } case ROTATION_YAW_180: x = -x; y = -y; return; case ROTATION_YAW_225: { tmp = HALF_SQRT_2*(ftype)(y - x); y = -HALF_SQRT_2*(ftype)(x + y); x = tmp; return; } case ROTATION_YAW_270: { tmp = x; x = y; y = -tmp; return; } case ROTATION_YAW_315: { tmp = HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(y - x); x = tmp; return; } case ROTATION_ROLL_180: { y = -y; z = -z; return; } case ROTATION_ROLL_180_YAW_45: { tmp = HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(x - y); x = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_90: case ROTATION_PITCH_180_YAW_270: { tmp = x; x = y; y = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_135: { tmp = HALF_SQRT_2*(ftype)(y - x); y = HALF_SQRT_2*(ftype)(y + x); x = tmp; z = -z; return; } case ROTATION_PITCH_180: { x = -x; z = -z; return; } case ROTATION_ROLL_180_YAW_225: { tmp = -HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(y - x); x = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_270: case ROTATION_PITCH_180_YAW_90: { tmp = x; x = -y; y = -tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_315: { tmp = HALF_SQRT_2*(ftype)(x - y); y = -HALF_SQRT_2*(ftype)(x + y); x = tmp; z = -z; return; } case ROTATION_ROLL_90: { tmp = z; z = y; y = -tmp; return; } case ROTATION_ROLL_90_YAW_45: { tmp = z; z = y; y = -tmp; tmp = HALF_SQRT_2*(ftype)(x - y); y = HALF_SQRT_2*(ftype)(x + y); x = tmp; return; } case ROTATION_ROLL_90_YAW_90: { tmp = z; z = y; y = -tmp; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_90_YAW_135: { tmp = z; z = y; y = -tmp; tmp = -HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(x - y); x = tmp; return; } case ROTATION_ROLL_270: { tmp = z; z = -y; y = tmp; return; } case ROTATION_ROLL_270_YAW_45: { tmp = z; z = -y; y = tmp; tmp = HALF_SQRT_2*(ftype)(x - y); y = HALF_SQRT_2*(ftype)(x + y); x = tmp; return; } case ROTATION_ROLL_270_YAW_90: { tmp = z; z = -y; y = tmp; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_270_YAW_135: { tmp = z; z = -y; y = tmp; tmp = -HALF_SQRT_2*(ftype)(x + y); y = HALF_SQRT_2*(ftype)(x - y); x = tmp; return; } case ROTATION_PITCH_90: { tmp = z; z = -x; x = tmp; return; } case ROTATION_PITCH_270: { tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_90_PITCH_90: { tmp = z; z = y; y = -tmp; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_180_PITCH_90: { y = -y; z = -z; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_270_PITCH_90: { tmp = z; z = -y; y = tmp; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_90_PITCH_180: { tmp = z; z = y; y = -tmp; x = -x; z = -z; return; } case ROTATION_ROLL_270_PITCH_180: { tmp = z; z = -y; y = tmp; x = -x; z = -z; return; } case ROTATION_ROLL_90_PITCH_270: { tmp = z; z = y; y = -tmp; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_180_PITCH_270: { y = -y; z = -z; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_270_PITCH_270: { tmp = z; z = -y; y = tmp; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_90_PITCH_180_YAW_90: { tmp = z; z = y; y = -tmp; x = -x; z = -z; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_90_YAW_270: { tmp = z; z = y; y = -tmp; tmp = x; x = y; y = -tmp; return; } case ROTATION_ROLL_90_PITCH_68_YAW_293: { T tmpx = x; T tmpy = y; T tmpz = z; x = 0.14303897231223747232853327204793 * tmpx + 0.36877648650320382639478111741482 * tmpy + -0.91844638134308709265241077446262 * tmpz; y = -0.33213277779664740485543461545603 * tmpx + -0.85628942146641884303193137384369 * tmpy + -0.39554550256296522325882847326284 * tmpz; z = -0.93232380121551217122544130688766 * tmpx + 0.36162457008209242248497616856184 * tmpy + 0.00000000000000002214311861220361 * tmpz; return; } case ROTATION_PITCH_315: { tmp = HALF_SQRT_2*(ftype)(x - z); z = HALF_SQRT_2*(ftype)(x + z); x = tmp; return; } case ROTATION_ROLL_90_PITCH_315: { tmp = z; z = y; y = -tmp; tmp = HALF_SQRT_2*(ftype)(x - z); z = HALF_SQRT_2*(ftype)(x + z); x = tmp; return; } case ROTATION_PITCH_7: { const T sin_pitch = 0.1218693434051474899781908334262; // sinF(pitch); const T cos_pitch = 0.99254615164132198312785249072476; // cosF(pitch); T tmpx = x; T tmpz = z; x = cos_pitch * tmpx + sin_pitch * tmpz; z = -sin_pitch * tmpx + cos_pitch * tmpz; return; } case ROTATION_ROLL_45: { tmp = HALF_SQRT_2*(ftype)(y - z); z = HALF_SQRT_2*(ftype)(y + z); y = tmp; return; } case ROTATION_ROLL_315: { tmp = HALF_SQRT_2*(ftype)(y + z); z = HALF_SQRT_2*(ftype)(z - y); y = tmp; return; } case ROTATION_CUSTOM: // Error: caller must perform custom rotations via matrix multiplication INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); return; case ROTATION_MAX: break; } // rotation invalid INTERNAL_ERROR(AP_InternalError::error_t::bad_rotation); } template <typename T> void Vector3<T>::rotate_inverse(enum Rotation rotation) { Vector3<T> x_vec(1.0f,0.0f,0.0f); Vector3<T> y_vec(0.0f,1.0f,0.0f); Vector3<T> z_vec(0.0f,0.0f,1.0f); x_vec.rotate(rotation); y_vec.rotate(rotation); z_vec.rotate(rotation); Matrix3<T> M( x_vec.x, y_vec.x, z_vec.x, x_vec.y, y_vec.y, z_vec.y, x_vec.z, y_vec.z, z_vec.z ); (*this) = M.mul_transpose(*this); } // rotate vector by angle in radians in xy plane leaving z untouched template <typename T> void Vector3<T>::rotate_xy(T angle_rad) { const T cs = cosF(angle_rad); const T sn = sinF(angle_rad); T rx = x * cs - y * sn; T ry = x * sn + y * cs; x = rx; y = ry; } // vector cross product template <typename T> Vector3<T> Vector3<T>::operator %(const Vector3<T> &v) const { Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x); return temp; } // dot product template <typename T> T Vector3<T>::operator *(const Vector3<T> &v) const { return x*v.x + y*v.y + z*v.z; } template <typename T> T Vector3<T>::length(void) const { return norm(x, y, z); } // limit xy component vector to a given length. returns true if vector was limited template <typename T> bool Vector3<T>::limit_length_xy(T max_length) { const T length_xy = norm(x, y); if ((length_xy > max_length) && is_positive(length_xy)) { x *= (max_length / length_xy); y *= (max_length / length_xy); return true; } return false; } template <typename T> Vector3<T> &Vector3<T>::operator *=(const T num) { x*=num; y*=num; z*=num; return *this; } template <typename T> Vector3<T> &Vector3<T>::operator /=(const T num) { x /= num; y /= num; z /= num; return *this; } template <typename T> Vector3<T> &Vector3<T>::operator -=(const Vector3<T> &v) { x -= v.x; y -= v.y; z -= v.z; return *this; } template <typename T> bool Vector3<T>::is_nan(void) const { return isnan(x) || isnan(y) || isnan(z); } template <typename T> bool Vector3<T>::is_inf(void) const { return isinf(x) || isinf(y) || isinf(z); } template <typename T> Vector3<T> &Vector3<T>::operator +=(const Vector3<T> &v) { x+=v.x; y+=v.y; z+=v.z; return *this; } template <typename T> Vector3<T> Vector3<T>::operator /(const T num) const { return Vector3<T>(x/num, y/num, z/num); } template <typename T> Vector3<T> Vector3<T>::operator *(const T num) const { return Vector3<T>(x*num, y*num, z*num); } template <typename T> Vector3<T> Vector3<T>::operator -(const Vector3<T> &v) const { return Vector3<T>(x-v.x, y-v.y, z-v.z); } template <typename T> Vector3<T> Vector3<T>::operator +(const Vector3<T> &v) const { return Vector3<T>(x+v.x, y+v.y, z+v.z); } template <typename T> Vector3<T> Vector3<T>::operator -(void) const { return Vector3<T>(-x,-y,-z); } template <typename T> bool Vector3<T>::operator ==(const Vector3<T> &v) const { return (is_equal(x,v.x) && is_equal(y,v.y) && is_equal(z,v.z)); } template <typename T> bool Vector3<T>::operator !=(const Vector3<T> &v) const { return (!is_equal(x,v.x) || !is_equal(y,v.y) || !is_equal(z,v.z)); } template <typename T> T Vector3<T>::angle(const Vector3<T> &v2) const { const T len = this->length() * v2.length(); if (len <= 0) { return 0.0f; } const T cosv = ((*this)*v2) / len; if (fabsF(cosv) >= 1) { return 0.0f; } return acosF(cosv); } // multiplication of transpose by a vector template <typename T> Vector3<T> Vector3<T>::operator *(const Matrix3<T> &m) const { return Vector3<T>(*this * m.colx(), *this * m.coly(), *this * m.colz()); } // multiply a column vector by a row vector, returning a 3x3 matrix template <typename T> Matrix3<T> Vector3<T>::mul_rowcol(const Vector3<T> &v2) const { const Vector3<T> v1 = *this; return Matrix3<T>(v1.x * v2.x, v1.x * v2.y, v1.x * v2.z, v1.y * v2.x, v1.y * v2.y, v1.y * v2.z, v1.z * v2.x, v1.z * v2.y, v1.z * v2.z); } // extrapolate position given bearing and pitch (in degrees) and distance template <typename T> void Vector3<T>::offset_bearing(T bearing, T pitch, T distance) { y += cosF(radians(pitch)) * sinF(radians(bearing)) * distance; x += cosF(radians(pitch)) * cosF(radians(bearing)) * distance; z += sinF(radians(pitch)) * distance; } // distance from the tip of this vector to a line segment specified by two vectors template <typename T> T Vector3<T>::distance_to_segment(const Vector3<T> &seg_start, const Vector3<T> &seg_end) const { // triangle side lengths const T a = (*this-seg_start).length(); const T b = (seg_start-seg_end).length(); const T c = (seg_end-*this).length(); // protect against divide by zero later if (::is_zero(b)) { return 0.0f; } // semiperimeter of triangle const T s = (a+b+c) * 0.5f; T area_squared = s*(s-a)*(s-b)*(s-c); // area must be constrained above 0 because a triangle could have 3 points could be on a line and float rounding could push this under 0 if (area_squared < 0.0f) { area_squared = 0.0f; } const T area = safe_sqrt(area_squared); return 2.0f*area/b; } // Shortest distance between point(p) to a point contained in the line segment defined by w1,w2 template <typename T> T Vector3<T>::closest_distance_between_line_and_point(const Vector3<T> &w1, const Vector3<T> &w2, const Vector3<T> &p) { const Vector3<T> nearest = point_on_line_closest_to_other_point(w1, w2, p); const T dist = (nearest - p).length(); return dist; } // Point in the line segment defined by w1,w2 which is closest to point(p) // this is based on the explanation given here: www.fundza.com/vectors/point2line/index.html template <typename T> Vector3<T> Vector3<T>::point_on_line_closest_to_other_point(const Vector3<T> &w1, const Vector3<T> &w2, const Vector3<T> &p) { const Vector3<T> line_vec = w2-w1; const Vector3<T> p_vec = p - w1; const T line_vec_len = line_vec.length(); // protection against divide by zero if(::is_zero(line_vec_len)) { return {0.0f, 0.0f, 0.0f}; } const T scale = 1/line_vec_len; const Vector3<T> unit_vec = line_vec * scale; const Vector3<T> scaled_p_vec = p_vec * scale; T dot_product = unit_vec * scaled_p_vec; dot_product = constrain_ftype(dot_product,0.0f,1.0f); const Vector3<T> closest_point = line_vec * dot_product; return (closest_point + w1); } // Closest point between two line segments // This implementation is borrowed from: http://geomalgorithms.com/a07-_distance.html // INPUT: 4 points corresponding to start and end of two line segments // OUTPUT: closest point on segment 2, from segment 1, gets passed on reference as "closest_point" template <typename T> void Vector3<T>::segment_to_segment_closest_point(const Vector3<T>& seg1_start, const Vector3<T>& seg1_end, const Vector3<T>& seg2_start, const Vector3<T>& seg2_end, Vector3<T>& closest_point) { // direction vectors const Vector3<T> line1 = seg1_end - seg1_start; const Vector3<T> line2 = seg2_end - seg2_start; const Vector3<T> diff = seg1_start - seg2_start; const T a = line1*line1; const T b = line1*line2; const T c = line2*line2; const T d = line1*diff; const T e = line2*diff; const T discriminant = (a*c) - (b*b); T sN, sD = discriminant; // default sD = D >= 0 T tc, tN, tD = discriminant; // tc = tN / tD, default tD = D >= 0 if (discriminant < FLT_EPSILON) { sN = 0.0; // force using point seg1_start on line 1 sD = 1.0; // to prevent possible division by 0.0 later tN = e; tD = c; } else { // get the closest points on the infinite lines sN = (b*e - c*d); tN = (a*e - b*d); if (sN < 0.0) { // sc < 0 => the s=0 edge is visible sN = 0.0; tN = e; tD = c; } else if (sN > sD) { // sc > 1 => the s=1 edge is visible sN = sD; tN = e + b; tD = c; } } if (tN < 0.0) { // tc < 0 => the t=0 edge is visible tN = 0.0; // recompute sc for this edge if (-d < 0.0) { sN = 0.0; } else if (-d > a) { sN = sD; } else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible tN = tD; // recompute sc for this edge if ((-d + b) < 0.0) { sN = 0; } else if ((-d + b) > a) { sN = sD; } else { sN = (-d + b); sD = a; } } // finally do the division to get tc tc = (::is_zero(tN) ? 0.0 : tN / tD); // closest point on seg2 closest_point = seg2_start + line2*tc; } // Returns true if the passed 3D segment passes through a plane defined by plane normal, and a point on the plane template <typename T> bool Vector3<T>::segment_plane_intersect(const Vector3<T>& seg_start, const Vector3<T>& seg_end, const Vector3<T>& plane_normal, const Vector3<T>& plane_point) { Vector3<T> u = seg_end - seg_start; Vector3<T> w = seg_start - plane_point; T D = plane_normal * u; T N = -(plane_normal * w); if (::is_zero(D)) { if (::is_zero(N)) { // segment lies in this plane return true; } else { // does not intersect return false; } } const T sI = N / D; if (sI < 0 || sI > 1) { // does not intersect return false; } // intersects at unique point return true; } // define for float and double template class Vector3<float>; template class Vector3<double>; // define needed ops for Vector3l template Vector3<int32_t> &Vector3<int32_t>::operator +=(const Vector3<int32_t> &v);