/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_TimerProcess.h" extern "C" { #include #include #include } #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WConstants.h" #endif uint8_t AP_TimerProcess::_period; ap_procedure AP_TimerProcess::_proc[AP_TIMERPROCESS_MAX_PROCS]; ap_procedure AP_TimerProcess::_failsafe; ap_procedure AP_TimerProcess::_queued_proc = NULL; bool AP_TimerProcess::_in_timer_call; uint8_t AP_TimerProcess::_pidx = 0; bool AP_TimerProcess::_suspended; AP_TimerProcess::AP_TimerProcess(uint8_t period) { _period = period; } void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg ) { // Enable Timer2 Overflow interrupt to trigger process. TIMSK2 = 0; // Disable interrupts TCCR2A = 0; // normal counting mode TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256 TCNT2 = 0; // Set count to zero, so it goes off right away. TIFR2 = _BV(TOV2); // clear pending interrupts; TIMSK2 = _BV(TOIE2); // enable the overflow interrupt _failsafe = NULL; _suspended = false; _in_timer_call = false; for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++) _proc[i] = NULL; isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run); } /* * register a process to be called at the timer interrupt rate */ void AP_TimerProcess::register_process(ap_procedure proc) { // see if its already registered (due to double initialisation // of a driver) for (uint8_t i=0; i<_pidx; i++) { if (_proc[i] == proc) return; } uint8_t oldSREG = SREG; cli(); if (_pidx < AP_TIMERPROCESS_MAX_PROCS) _proc[_pidx++] = proc; SREG = oldSREG; } void AP_TimerProcess::set_failsafe(ap_procedure proc) { _failsafe = proc; } /* * queue a process to be run as soon as any currently running ap_processes complete */ bool AP_TimerProcess::queue_process(ap_procedure proc) { // check if we are running any ap_processes if( _in_timer_call || _suspended ) { // queue the process to run after current processes finish _queued_proc = proc; return false; }else{ // run process immediately _suspended = true; proc(micros()); _suspended = false; return true; } } void AP_TimerProcess::suspend_timer(void) { _suspended = true; } void AP_TimerProcess::resume_timer(void) { _suspended = false; } bool AP_TimerProcess::running(void) { return !_suspended; } void AP_TimerProcess::run(void) { // we enable the interrupt again immediately and also enable // interrupts. This allows other time critical interrupts to // run (such as the serial receive interrupt). We catch the // timer calls taking too long using _in_timer_call. // This approach also gives us a nice uniform spacing between // timer calls TCNT2 = _period; sei(); uint32_t tnow = micros(); if (_in_timer_call) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != NULL) { _failsafe(tnow); } return; } _in_timer_call = true; if (!_suspended) { // now call the timer based drivers for (int i = 0; i < _pidx; i++) { if (_proc[i] != NULL) { _proc[i](tnow); } } // run any queued processes uint8_t oldSREG = SREG; cli(); ap_procedure qp = _queued_proc; _queued_proc = NULL; SREG = oldSREG; if( qp != NULL ) { _suspended = true; qp(tnow); _suspended = false; } } // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(tnow); } _in_timer_call = false; }