#include <AP_HAL/AP_HAL.h> #if HAL_ENABLE_LIBUAVCAN_DRIVERS #include "AP_OpticalFlow_HereFlow.h" #include <AP_CANManager/AP_CANManager.h> #include <AP_UAVCAN/AP_UAVCAN.h> #include <com/hex/equipment/flow/Measurement.hpp> extern const AP_HAL::HAL& hal; //UAVCAN Frontend Registry Binder UC_REGISTRY_BINDER(MeasurementCb, com::hex::equipment::flow::Measurement); uint8_t AP_OpticalFlow_HereFlow::_node_id = 0; AP_OpticalFlow_HereFlow* AP_OpticalFlow_HereFlow::_driver = nullptr; AP_UAVCAN* AP_OpticalFlow_HereFlow::_ap_uavcan = nullptr; /* constructor - registers instance at top Flow driver */ AP_OpticalFlow_HereFlow::AP_OpticalFlow_HereFlow(OpticalFlow &flow) : OpticalFlow_backend(flow) { if (_driver) { AP_HAL::panic("Only one instance of Flow supported!"); } _driver = this; } //links the HereFlow messages to the backend void AP_OpticalFlow_HereFlow::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber<com::hex::equipment::flow::Measurement, MeasurementCb> *measurement_listener; measurement_listener = new uavcan::Subscriber<com::hex::equipment::flow::Measurement, MeasurementCb>(*node); // Register method to handle incoming HereFlow measurement const int measurement_listener_res = measurement_listener->start(MeasurementCb(ap_uavcan, &handle_measurement)); if (measurement_listener_res < 0) { AP_HAL::panic("UAVCAN Flow subscriber start problem\n\r"); return; } } //updates driver states based on received HereFlow messages void AP_OpticalFlow_HereFlow::handle_measurement(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MeasurementCb &cb) { if (_driver == nullptr) { return; } //protect from data coming from duplicate sensors, //as we only handle one Here Flow at a time as of now if (_ap_uavcan == nullptr) { _ap_uavcan = ap_uavcan; _node_id = node_id; } if (_ap_uavcan == ap_uavcan && _node_id == node_id) { WITH_SEMAPHORE(_driver->_sem); _driver->new_data = true; _driver->flowRate = Vector2f(cb.msg->flow_integral[0], cb.msg->flow_integral[1]); _driver->bodyRate = Vector2f(cb.msg->rate_gyro_integral[0], cb.msg->rate_gyro_integral[1]); _driver->integral_time = cb.msg->integration_interval; _driver->surface_quality = cb.msg->quality; } } void AP_OpticalFlow_HereFlow::update() { _push_state(); } // Read the sensor void AP_OpticalFlow_HereFlow::_push_state(void) { WITH_SEMAPHORE(_sem); if (!new_data) { return; } struct OpticalFlow::OpticalFlow_state state; const Vector2f flowScaler = _flowScaler(); //setup scaling based on parameters float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; float integralToRate = 1.0f / integral_time; //Convert to Raw Flow measurement to Flow Rate measurement state.flowRate = Vector2f(flowRate.x * flowScaleFactorX, flowRate.y * flowScaleFactorY) * integralToRate; state.bodyRate = bodyRate * integralToRate; state.surface_quality = surface_quality; _applyYaw(state.flowRate); _applyYaw(state.bodyRate); // hal.console->printf("DRV: %u %f %f\n", state.surface_quality, flowRate.length(), bodyRate.length()); _update_frontend(state); new_data = false; } #endif // HAL_ENABLE_LIBUAVCAN_DRIVERS