// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AP_IMU_Oilpan.h /// @brief IMU driver for the APM oilpan #ifndef AP_IMU_Oilpan_h #define AP_IMU_Oilpan_h #include #include #include #include #include "IMU.h" class AP_IMU_Oilpan : public IMU { public: /// Constructor /// /// Saves the ADC pointer and constructs the calibration data variable. /// /// @param adc Pointer to the AP_ADC instance that is connected to the gyro and accelerometer. /// @param key The AP_Var::key value we will use when loading/saving calibration data. /// AP_IMU_Oilpan(AP_ADC *adc, AP_Var::Key key) : _adc(adc), _sensor_cal(key, PSTR("IMU_SENSOR_CAL")) // _sensor_cal(key, PSTR("IMU_SENSOR_CAL"), AP_Var::k_flag_no_auto_load) {} /// Do warm or cold start. /// /// @note For a partial-warmstart where e.g. the accelerometer calibration should be preserved /// but the gyro cal needs to be re-performed, start with ::init(WARM_START) to load the /// previous calibration settings, then force a re-calibration of the gyro with ::init_gyro. /// /// @param style Selects the initialisation style. /// COLD_START performs calibration of both the accelerometer and gyro. /// WARM_START loads accelerometer and gyro calibration from a previous cold start. /// virtual void init(Start_style style = COLD_START); virtual void save(); virtual void init_accel(); virtual void init_gyro(); virtual bool update(void); // for jason float gx() { return _sensor_cal[0]; } float gy() { return _sensor_cal[1]; } float gz() { return _sensor_cal[2]; } float ax() { return _sensor_cal[3]; } float ay() { return _sensor_cal[4]; } float az() { return _sensor_cal[5]; } void ax(const float v) { _sensor_cal[3] = v; } void ay(const float v) { _sensor_cal[4] = v; } void az(const float v) { _sensor_cal[5] = v; } private: AP_ADC *_adc; ///< ADC that we use for reading sensors AP_VarA _sensor_cal; ///< Calibrated sensor offsets virtual void _init_accel(); ///< no-save implementation virtual void _init_gyro(); ///< no-save implementation float _sensor_compensation(uint8_t channel, int temp) const; float _sensor_in(uint8_t channel, int temperature); // constants static const uint8_t _sensors[6]; ///< ADC channel mappings for the sensors static const int8_t _sensor_signs[6]; ///< ADC result sign adjustment for sensors static const uint8_t _gyro_temp_ch = 3; ///< ADC channel reading the gyro temperature static const float _gyro_temp_curve[3][3]; ///< Temperature compensation curve for the gyro // ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step // ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412 // Tested value : 418 // static const float _gravity = 423.8; ///< 1G in the raw data coming from the accelerometer // Value based on actual sample data from 20 boards static const float _accel_scale = 9.80665 / 423.8; ///< would like to use _gravity here, but cannot // IDG500 Sensitivity (from datasheet) => 2.0mV/degree/s, 0.8mV/ADC step => 0.8/3.33 = 0.4 // Tested values : 0.4026, ?, 0.4192 // static const float _gyro_gain_x = 0.4; // X axis Gyro gain static const float _gyro_gain_y = 0.41; // Y axis Gyro gain static const float _gyro_gain_z = 0.41; // Z axis Gyro gain // Maximum possible value returned by an offset-corrected sensor channel // static const float _adc_constraint = 900; // Gyro and Accelerometer calibration criterial // static const float _gyro_total_cal_change = 4.0; // Experimentally derived - allows for some minor motion static const float _gyro_max_cal_offset = 320.0; static const float _accel_total_cal_change = 4.0; static const float _accel_max_cal_offset = 250.0; }; #endif