/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#include "AP_InertialSensor_HIL.h"
#include <AP_HAL.h>
const extern AP_HAL::HAL& hal;

AP_InertialSensor_HIL::AP_InertialSensor_HIL() : AP_InertialSensor() {
    _accel[0] = Vector3f(0, 0, -GRAVITY_MSS);
}

uint16_t AP_InertialSensor_HIL::_init_sensor( Sample_rate sample_rate ) {
    switch (sample_rate) {
    case RATE_50HZ:
        _sample_period_usec = 20000;
        break;
    case RATE_100HZ:
        _sample_period_usec = 10000;
        break;
    case RATE_200HZ:
        _sample_period_usec = 5000;
        break;
    case RATE_400HZ:
        _sample_period_usec = 2500;
        break;
    }
    return AP_PRODUCT_ID_NONE;
}

/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */

bool AP_InertialSensor_HIL::update( void ) {
    uint32_t now = hal.scheduler->micros();
    _last_update_usec = now;
    return true;
}

float AP_InertialSensor_HIL::get_delta_time() const {
    return _sample_period_usec * 1.0e-6f;
}

float AP_InertialSensor_HIL::get_gyro_drift_rate(void) {
    // 0.5 degrees/second/minute
    return ToRad(0.5/60);
}

bool AP_InertialSensor_HIL::_sample_available()
{
    uint16_t ret = (hal.scheduler->micros() - _last_update_usec) 
        / _sample_period_usec;
    
    return ret > 0;
}

bool AP_InertialSensor_HIL::wait_for_sample(uint16_t timeout_ms)
{
    if (_sample_available()) {
        return true;
    }
    uint32_t start = hal.scheduler->millis();
    while ((hal.scheduler->millis() - start) < timeout_ms) {
        hal.scheduler->delay(1);
        if (_sample_available()) {
            return true;
        }
    }
    return false;
}

void AP_InertialSensor_HIL::set_accel(uint8_t instance, const Vector3f &accel)
{
    if (instance >= INS_MAX_INSTANCES) {
        return;
    }
    _previous_accel[instance] = _accel[instance];
    _accel[instance] = accel;
    _last_accel_usec[instance] = hal.scheduler->micros();
}

void AP_InertialSensor_HIL::set_gyro(uint8_t instance, const Vector3f &gyro)
{
    if (instance >= INS_MAX_INSTANCES) {
        return;
    }
    _gyro[instance] = gyro;
    _last_gyro_usec[instance] = hal.scheduler->micros();
}

bool AP_InertialSensor_HIL::get_gyro_health(uint8_t instance) const
{
    if (instance >= INS_MAX_INSTANCES) {
        return false;
    }
    return (hal.scheduler->micros() - _last_gyro_usec[instance]) < 40000;
}

bool AP_InertialSensor_HIL::get_accel_health(uint8_t instance) const
{
    if (instance >= INS_MAX_INSTANCES) {
        return false;
    }
    return (hal.scheduler->micros() - _last_accel_usec[instance]) < 40000;
}

uint8_t AP_InertialSensor_HIL::get_gyro_count(void) const
{
    if (get_gyro_health(1)) {
        return 2;
    }
    return 1;
}

uint8_t AP_InertialSensor_HIL::get_accel_count(void) const
{
    if (get_accel_health(1)) {
        return 2;
    }
    return 1;
}