/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* FCM320 barometer driver */ #include "AP_Baro_FBM320.h" #if AP_BARO_FBM320_ENABLED #include <utility> #include <stdio.h> #include <AP_Math/definitions.h> extern const AP_HAL::HAL &hal; #define FBM320_REG_ID 0x6B #define FBM320_REG_DATA 0xF6 #define FBM320_REG_CMD 0xF4 #define FBM320_CMD_READ_T 0x2E #define FBM320_CMD_READ_P 0xF4 #define FBM320_WHOAMI 0x42 AP_Baro_FBM320::AP_Baro_FBM320(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> _dev) : AP_Baro_Backend(baro) , dev(std::move(_dev)) { } AP_Baro_Backend *AP_Baro_FBM320::probe(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> _dev) { if (!_dev) { return nullptr; } AP_Baro_FBM320 *sensor = NEW_NOTHROW AP_Baro_FBM320(baro, std::move(_dev)); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } /* read calibration data */ bool AP_Baro_FBM320::read_calibration(void) { uint8_t tmp[2]; uint16_t R[10]; for (uint8_t i=0; i<9; i++) { if (!dev->read_registers(0xAA+(i*2),&tmp[0],1)) { return false; } if (!dev->read_registers(0xAB+(i*2),&tmp[1],1)) { return false; } R[i] = ((uint8_t)tmp[0] << 8 | tmp[1]); } if (!dev->read_registers(0xA4,&tmp[0],1)) { return false; } if (!dev->read_registers(0xF1,&tmp[0],1)) { return false; } R[9] = ((uint8_t)tmp[0] << 8) | tmp[1]; /* Use R0~R9 calculate C0~C12 of FBM320-02 */ calibration.C0 = R[0] >> 4; calibration.C1 = ((R[1] & 0xFF00) >> 5) | (R[2] & 7); calibration.C2 = ((R[1] & 0xFF) << 1) | (R[4] & 1); calibration.C3 = R[2] >> 3; calibration.C4 = ((uint32_t)R[3] << 2) | (R[0] & 3); calibration.C5 = R[4] >> 1; calibration.C6 = R[5] >> 3; calibration.C7 = ((uint32_t)R[6] << 3) | (R[5] & 7); calibration.C8 = R[7] >> 3; calibration.C9 = R[8] >> 2; calibration.C10 = ((R[9] & 0xFF00) >> 6) | (R[8] & 3); calibration.C11 = R[9] & 0xFF; calibration.C12 = ((R[0] & 0x0C) << 1) | (R[7] & 7); return true; } bool AP_Baro_FBM320::init() { if (!dev) { return false; } dev->get_semaphore()->take_blocking(); dev->set_speed(AP_HAL::Device::SPEED_HIGH); uint8_t whoami; if (!dev->read_registers(FBM320_REG_ID, &whoami, 1) || whoami != FBM320_WHOAMI) { // not a FBM320 dev->get_semaphore()->give(); return false; } printf("FBM320 ID 0x%x\n", whoami); if (!read_calibration()) { dev->get_semaphore()->give(); return false; } dev->write_register(FBM320_REG_CMD, FBM320_CMD_READ_T); instance = _frontend.register_sensor(); dev->set_device_type(DEVTYPE_BARO_FBM320); set_bus_id(instance, dev->get_bus_id()); dev->get_semaphore()->give(); // request 50Hz update dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_FBM320::timer, void)); return true; } /* calculate corrected pressure and temperature */ void AP_Baro_FBM320::calculate_PT(int32_t UT, int32_t UP, int32_t &pressure, int32_t &temperature) { const struct fbm320_calibration &cal = calibration; int32_t DT, DT2, X01, X02, X03, X11, X12, X13, X21, X22, X23, X24, X25, X26, X31, X32, CF, PP1, PP2, PP3, PP4; DT = ((UT - 8388608) >> 4) + (cal.C0 << 4); X01 = (cal.C1 + 4459) * DT >> 1; X02 = ((((cal.C2 - 256) * DT) >> 14) * DT) >> 4; X03 = (((((cal.C3 * DT) >> 18) * DT) >> 18) * DT); temperature = ((2500 << 15) - X01 - X02 - X03) >> 15; DT2 = (X01 + X02 + X03) >> 12; X11 = ((cal.C5 - 4443) * DT2); X12 = (((cal.C6 * DT2) >> 16) * DT2) >> 2; X13 = ((X11 + X12) >> 10) + ((cal.C4 + 120586) << 4); X21 = ((cal.C8 + 7180) * DT2) >> 10; X22 = (((cal.C9 * DT2) >> 17) * DT2) >> 12; X23 = (X22 >= X21) ? (X22 - X21) : (X21 - X22); X24 = (X23 >> 11) * (cal.C7 + 166426); X25 = ((X23 & 0x7FF) * (cal.C7 + 166426)) >> 11; X26 = (X21 >= X22) ? (((0 - X24 - X25) >> 11) + cal.C7 + 166426) : (((X24 + X25) >> 11) + cal.C7 + 166426); PP1 = ((UP - 8388608) - X13) >> 3; PP2 = (X26 >> 11) * PP1; PP3 = ((X26 & 0x7FF) * PP1) >> 11; PP4 = (PP2 + PP3) >> 10; CF = (2097152 + cal.C12 * DT2) >> 3; X31 = (((CF * cal.C10) >> 17) * PP4) >> 2; X32 = (((((CF * cal.C11) >> 15) * PP4) >> 18) * PP4); pressure = ((X31 + X32) >> 15) + PP4 + 99880; } // accumulate a new sensor reading void AP_Baro_FBM320::timer(void) { uint8_t buf[3]; if (!dev->read_registers(0xF6, buf, sizeof(buf))) { return; } int32_t value = ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | (uint32_t)buf[2]; if (step == 0) { value_T = value; } else { int32_t pressure, temperature; calculate_PT(value_T, value, pressure, temperature); if (pressure_ok(pressure)) { WITH_SEMAPHORE(_sem); pressure_sum += pressure; // sum and convert to degrees temperature_sum += temperature*0.01; count++; } } if (step++ >= 5) { dev->write_register(FBM320_REG_CMD, FBM320_CMD_READ_T); step = 0; } else { dev->write_register(FBM320_REG_CMD, FBM320_CMD_READ_P); } } // transfer data to the frontend void AP_Baro_FBM320::update(void) { if (count == 0) { return; } WITH_SEMAPHORE(_sem); _copy_to_frontend(instance, pressure_sum/count, temperature_sum/count); pressure_sum = 0; temperature_sum = 0; count=0; } #endif // AP_BARO_FBM320_ENABLED