/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_RangeFinder_BLPing.h" #if AP_RANGEFINDER_BLPING_ENABLED #include <AP_HAL/AP_HAL.h> void AP_RangeFinder_BLPing::update(void) { if (uart == nullptr) { return; } AP_RangeFinder_Backend_Serial::update(); if (status() == RangeFinder::Status::NoData) { const uint32_t now = AP_HAL::millis(); // initialise sensor if no distances recently if (now - last_init_ms > read_timeout_ms()) { last_init_ms = now; init_sensor(); } } } void AP_RangeFinder_BLPing::init_sensor() { // Set message interval between pings in ms uint16_t ping_interval = _sensor_rate_ms; protocol.send_message(uart, PingProtocol::MessageId::SET_PING_INTERVAL, reinterpret_cast<uint8_t*>(&ping_interval), sizeof(ping_interval)); // Send a message requesting a continuous uint16_t continuous_message = static_cast<uint16_t>(PingProtocol::MessageId::DISTANCE_SIMPLE); protocol.send_message(uart, PingProtocol::MessageId::CONTINUOUS_START, reinterpret_cast<uint8_t*>(&continuous_message), sizeof(continuous_message)); } // distance returned in reading_m, signal_ok is set to true if sensor reports a strong signal bool AP_RangeFinder_BLPing::get_reading(float &reading_m) { if (uart == nullptr) { return false; } struct { float sum_cm = 0; uint16_t count = 0; float mean() const { return sum_cm / count; }; } averageStruct; // read any available lines from the lidar for (auto i=0; i<8192; i++) { uint8_t b; if (!uart->read(b)) { break; } if (protocol.parse_byte(b) == PingProtocol::MessageId::DISTANCE_SIMPLE) { averageStruct.count++; averageStruct.sum_cm += protocol.get_distance_mm()/10.0f; } } if (averageStruct.count > 0) { // return average distance of readings reading_m = averageStruct.mean() * 0.01f; return true; } // no readings so return false return false; } int8_t AP_RangeFinder_BLPing::get_signal_quality_pct() const { if (status() != RangeFinder::Status::Good) { return RangeFinder::SIGNAL_QUALITY_UNKNOWN; } return protocol.get_confidence(); } uint8_t PingProtocol::get_confidence() const { return msg.payload[4]; } uint32_t PingProtocol::get_distance_mm() const { return (uint32_t)msg.payload[0] | (uint32_t)msg.payload[1] << 8 | (uint32_t)msg.payload[2] << 16 | (uint32_t)msg.payload[3] << 24; } void PingProtocol::send_message(AP_HAL::UARTDriver *uart, PingProtocol::MessageId msg_id, const uint8_t *payload, uint16_t payload_len) const { if (uart == nullptr) { return; } // check for sufficient space in outgoing buffer if (uart->txspace() < payload_len + 10U) { return; } // write header uart->write(_frame_header1); uart->write(_frame_header2); uint16_t crc = _frame_header1 + _frame_header2; // write payload length uart->write(LOWBYTE(payload_len)); uart->write(HIGHBYTE(payload_len)); crc += LOWBYTE(payload_len) + HIGHBYTE(payload_len); // message id uart->write(LOWBYTE(msg_id)); uart->write(HIGHBYTE(msg_id)); crc += LOWBYTE(msg_id) + HIGHBYTE(msg_id); // src dev id uart->write(_src_id); crc += _src_id; // destination dev id uart->write(_dst_id); crc += _dst_id; // payload if (payload != nullptr) { for (uint16_t i = 0; i<payload_len; i++) { uart->write(payload[i]); crc += payload[i]; } } // checksum uart->write(LOWBYTE(crc)); uart->write(HIGHBYTE(crc)); } PingProtocol::MessageId PingProtocol::parse_byte(uint8_t b) { // process byte depending upon current state switch (msg.state) { case ParserState::HEADER1: if (b == _frame_header1) { msg.crc_expected = _frame_header1; msg.state = ParserState::HEADER2; msg.done = false; } break; case ParserState::HEADER2: if (b == _frame_header2) { msg.crc_expected += _frame_header2; msg.state = ParserState::LEN_L; } else { msg.state = ParserState::HEADER1; } break; case ParserState::LEN_L: msg.payload_len = b; msg.crc_expected += b; msg.state = ParserState::LEN_H; break; case ParserState::LEN_H: msg.payload_len |= ((uint16_t)b << 8); msg.payload_recv = 0; msg.crc_expected += b; msg.state = ParserState::MSG_ID_L; break; case ParserState::MSG_ID_L: msg.id = b; msg.crc_expected += b; msg.state = ParserState::MSG_ID_H; break; case ParserState::MSG_ID_H: msg.id |= ((uint16_t)b << 8); msg.crc_expected += b; msg.state = ParserState::SRC_ID; break; case ParserState::SRC_ID: msg.crc_expected += b; msg.state = ParserState::DST_ID; break; case ParserState::DST_ID: msg.crc_expected += b; msg.state = ParserState::PAYLOAD; break; case ParserState::PAYLOAD: if (msg.payload_recv < msg.payload_len) { if (msg.payload_recv < ARRAY_SIZE(msg.payload)) { msg.payload[msg.payload_recv] = b; } msg.payload_recv++; msg.crc_expected += b; } if (msg.payload_recv == msg.payload_len) { msg.state = ParserState::CRC_L; } break; case ParserState::CRC_L: msg.crc = b; msg.state = ParserState::CRC_H; break; case ParserState::CRC_H: msg.crc |= ((uint16_t)b << 8); msg.state = ParserState::HEADER1; msg.done = msg.crc_expected == msg.crc; break; } return msg.done ? get_message_id() : MessageId::INVALID; } #endif // AP_RANGEFINDER_BLPING_ENABLED