#include #if !defined(HAL_BUILD_AP_PERIPH) #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "RCOutput.h" #define ENABLE_DEBUG 0 #if ENABLE_DEBUG # include # define Debug(fmt, args ...) do {::printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while (0) #else # define Debug(fmt, args ...) #endif using namespace HALSITL; void RCOutput::init() {} void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) { Debug("set_freq(0x%04x, %u)\n", static_cast(chmask), static_cast(freq_hz)); _freq_hz = freq_hz; } uint16_t RCOutput::get_freq(uint8_t ch) { return _freq_hz; } void RCOutput::enable_ch(uint8_t ch) { if (!(_enable_mask & (1U << ch))) { Debug("enable_ch(%u)\n", ch); } _enable_mask |= (1U << ch); } void RCOutput::disable_ch(uint8_t ch) { if (_enable_mask & (1U << ch)) { Debug("disable_ch(%u)\n", ch); } _enable_mask &= ~(1U << ch); } void RCOutput::write(uint8_t ch, uint16_t period_us) { _sitlState->output_ready = true; // FIXME: something in sitl is expecting to be able to read and write disabled channels if (ch < SITL_NUM_CHANNELS /*&& (_enable_mask & (1U<pwm_output[ch] = period_us; } } } uint16_t RCOutput::read(uint8_t ch) { // FIXME: something in sitl is expecting to be able to read and write disabled channels if (ch < SITL_NUM_CHANNELS /*&& (_enable_mask & (1U<pwm_output[ch]; } return 0; } void RCOutput::read(uint16_t* period_us, uint8_t len) { memcpy(period_us, _sitlState->pwm_output, len * sizeof(uint16_t)); } void RCOutput::cork(void) { if (!_corked) { memcpy(_pending, _sitlState->pwm_output, SITL_NUM_CHANNELS * sizeof(uint16_t)); _corked = true; } } void RCOutput::push(void) { if (_corked) { memcpy(_sitlState->pwm_output, _pending, SITL_NUM_CHANNELS * sizeof(uint16_t)); _corked = false; } // do not overwrite FETTec simulation's ESC telemetry data: SITL::SIM *sitl = AP::sitl(); if (sitl != nullptr && sitl->fetteconewireesc_sim.enabled()) { return; } if (esc_telem == nullptr) { esc_telem = new AP_ESC_Telem_SITL; } if (esc_telem != nullptr) { esc_telem->update(); } } /* Serial LED emulation */ bool RCOutput::set_serial_led_num_LEDs(const uint16_t chan, uint8_t num_leds, output_mode mode, uint32_t clock_mask) { if (chan > 15 || num_leds > 64) { return false; } SITL::SIM *sitl = AP::sitl(); if (sitl) { sitl->led.num_leds[chan] = num_leds; return true; } return false; } void RCOutput::set_serial_led_rgb_data(const uint16_t chan, int8_t led, uint8_t red, uint8_t green, uint8_t blue) { if (chan > 15) { return; } SITL::SIM *sitl = AP::sitl(); if (led == -1) { for (uint8_t i=0; i < sitl->led.num_leds[chan]; i++) { set_serial_led_rgb_data(chan, i, red, green, blue); } return; } if (led < -1 || led >= sitl->led.num_leds[chan]) { return; } if (sitl) { sitl->led.rgb[chan][led].rgb[0] = red; sitl->led.rgb[chan][led].rgb[1] = green; sitl->led.rgb[chan][led].rgb[2] = blue; } } void RCOutput::serial_led_send(const uint16_t chan) { SITL::SIM *sitl = AP::sitl(); if (sitl) { sitl->led.send_counter++; } } #endif //CONFIG_HAL_BOARD == HAL_BOARD_SITL void RCOutput::force_safety_off(void) { SITL::SIM *sitl = AP::sitl(); if (sitl == nullptr) { return; } sitl->force_safety_off(); } bool RCOutput::force_safety_on(void) { SITL::SIM *sitl = AP::sitl(); if (sitl == nullptr) { return false; } return sitl->force_safety_on(); } #endif //!defined(HAL_BUILD_AP_PERIPH)