/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_stabilize.pde - init and run calls for acro flight mode */ // acro_init - initialise acro controller static bool acro_init(bool ignore_checks) { return true; } // acro_run - runs the acro controller // should be called at 100hz or more static void acro_run() { int16_t target_roll, target_pitch, target_yaw; // convert the input to the desired body frame rate get_pilot_desired_angle_rates(g.rc_1.control_in, g.rc_2.control_in, g.rc_4.control_in, target_roll, target_pitch, target_yaw); attitude_control.ratebf_rpy(target_roll, target_pitch, target_yaw); // To-Do: handle helicopter // pilot controlled yaw using rate controller //get_yaw_rate_stabilized_bf(pilot_yaw); // call get_acro_level_rates() here? // To-Do: convert body-frame stabilized angles to earth frame angles and update controll_roll, pitch and yaw? // body-frame rate controller is run directly from 100hz loop } // get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates // returns desired angle rates in centi-degrees-per-second static void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, int16_t &roll_out, int16_t &pitch_out, int16_t &yaw_out) { // Calculate trainer mode earth frame rate command for roll int32_t target_rate; Vector3f rate_ef_level, rate_bf_level, rate_bf_request; // calculate rate requests rate_bf_request.x = roll_in * g.acro_rp_p; rate_bf_request.y = pitch_in * g.acro_rp_p; rate_bf_request.z = yaw_in * g.acro_yaw_p; // todo: add acceleration slew // calculate earth frame rate corrections to pull the copter back to level while in ACRO mode acro_level_mix = constrain_float(1-max(max(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*cos_pitch_x; // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor); target_rate = 0; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (roll_angle > aparm.angle_max){ target_rate = g.pi_stabilize_roll.get_p(aparm.angle_max-roll_angle); }else if (roll_angle < -aparm.angle_max) { target_rate = g.pi_stabilize_roll.get_p(-aparm.angle_max-roll_angle); } } roll_angle = constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE); rate_ef_level.x -= roll_angle * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor); target_rate = 0; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (pitch_angle > aparm.angle_max){ target_rate = g.pi_stabilize_pitch.get_p(aparm.angle_max-pitch_angle); }else if (pitch_angle < -aparm.angle_max) { target_rate = g.pi_stabilize_pitch.get_p(-aparm.angle_max-pitch_angle); } } pitch_angle = constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE); rate_ef_level.y -= pitch_angle * g.acro_balance_pitch; // Calculate trainer mode earth frame rate command for yaw rate_ef_level.z = 0; // convert earth-frame level rates to body-frame level rates attitude_control.rate_ef_targets_to_bf(rate_ef_level, rate_bf_level); // combine earth frame rate corrections with rate requests // combine bf roll leveling with requested bf roll rate if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_bf_request.x += rate_bf_level.x; }else{ // Scale pitch leveling by stick input rate_bf_level.x = (float)rate_bf_level.x*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_bf_request.x)-labs(rate_bf_level.x)); rate_bf_request.x += acro_roll_rate; rate_bf_request.x = constrain_int32(rate_bf_request.x, -rate_limit, rate_limit); } // combine bf pitch leveling with requested bf pitch rate if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_bf_request.y += rate_bf_level.y; }else{ // Scale pitch leveling by stick input rate_bf_level.y = (float)rate_bf_level.y*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_bf_request.y)-labs(rate_bf_level.y)); rate_bf_request.y += acro_roll_rate; rate_bf_request.y = constrain_int32(rate_bf_request.y, -rate_limit, rate_limit); } // combine bf yaw leveling with requested bf yaw rate if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_bf_request.z += rate_bf_level.z; }else{ // Scale pitch leveling by stick input rate_bf_level.z = (float)rate_bf_level.z*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_bf_request.z)-labs(rate_bf_level.z)); rate_bf_request.z += acro_roll_rate; rate_bf_request.z = constrain_int32(rate_bf_request.z, -rate_limit, rate_limit); } // hand back rate request roll_out = rate_bf_request.x; pitch_out = rate_bf_request.y; yaw_out = rate_bf_request.z; }