#include "Plane.h" #include "version.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // This is the help function int8_t Plane::main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" " reboot reboot to flight mode\n" "\n"); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] = { // command function called // ======= =============== {"logs", MENU_FUNC(process_logs)}, {"setup", MENU_FUNC(setup_mode)}, {"test", MENU_FUNC(test_mode)}, {"reboot", MENU_FUNC(reboot_board)}, {"help", MENU_FUNC(main_menu_help)}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); int8_t Plane::reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits void Plane::run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(nullptr,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(nullptr, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void mavlink_delay_cb_static() { plane.mavlink_delay_cb(); } static void failsafe_check_static() { plane.failsafe_check(); } void Plane::init_ardupilot() { // initialise serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM // load_parameters(); // initialise stats module g2.stats.init(); #if HIL_SUPPORT if (g.hil_mode == 1) { // set sensors to HIL mode ins.set_hil_mode(); compass.set_hil_mode(); barometer.set_hil_mode(); } #endif set_control_channels(); #if HAVE_PX4_MIXER if (!quadplane.enable) { // this must be before BoardConfig.init() so if // BRD_SAFETYENABLE==0 then we don't have safety off yet. For // quadplanes we wait till AP_Motors is initialised for (uint8_t tries=0; tries<10; tries++) { if (setup_failsafe_mixing()) { break; } hal.scheduler->delay(10); } } #endif GCS_MAVLINK::set_dataflash(&DataFlash); mavlink_system.sysid = g.sysid_this_mav; // initialise serial ports serial_manager.init(); gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // setup any board specific drivers BoardConfig.init(); init_rc_out_main(); // allow servo set on all channels except first 4 ServoRelayEvents.set_channel_mask(0xFFF0); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // initialise rangefinder init_rangefinder(); // initialise battery monitoring battery.init(); rpm_sensor.init(); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup telem slots with serial ports for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); } // setup frsky #if FRSKY_TELEM_ENABLED == ENABLED // setup frsky, and pass a number of parameters to the library frsky_telemetry.init(serial_manager, FIRMWARE_STRING, MAV_TYPE_FIXED_WING, &g.fs_batt_voltage, &g.fs_batt_mah); #endif #if LOGGING_ENABLED == ENABLED log_init(); #endif // initialise airspeed sensor airspeed.init(); if (g.compass_enabled==true) { bool compass_ok = compass.init() && compass.read(); #if HIL_SUPPORT if (g.hil_mode != 0) { compass_ok = true; } #endif if (!compass_ok) { cliSerial->println("Compass initialisation failed!"); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } #if OPTFLOW == ENABLED // make optflow available to libraries if (optflow.enabled()) { ahrs.set_optflow(&optflow); } #endif // give AHRS the airspeed sensor ahrs.set_airspeed(&airspeed); // GPS Initialization gps.init(&DataFlash, serial_manager); init_rc_in(); // sets up rc channels from radio relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #if FENCE_TRIGGERED_PIN > 0 hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); hal.gpio->write(FENCE_TRIGGERED_PIN, 0); #endif /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if CLI_ENABLED == ENABLED if (g.cli_enabled == 1) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != nullptr)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != nullptr)) { gcs[2].get_uart()->println(msg); } } #endif // CLI_ENABLED init_capabilities(); quadplane.setup(); startup_ground(); // don't initialise aux rc output until after quadplane is setup as // that can change initial values of channels init_rc_out_aux(); // choose the nav controller set_nav_controller(); set_mode((FlightMode)g.initial_mode.get(), MODE_REASON_UNKNOWN); // set the correct flight mode // --------------------------- reset_control_switch(); // initialise sensor #if OPTFLOW == ENABLED if (optflow.enabled()) { optflow.init(); } #endif } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** void Plane::startup_ground(void) { set_mode(INITIALISING, MODE_REASON_UNKNOWN); gcs_send_text(MAV_SEVERITY_INFO," Ground start"); #if (GROUND_START_DELAY > 0) gcs_send_text(MAV_SEVERITY_NOTICE," With delay"); delay(GROUND_START_DELAY * 1000); #endif //INS ground start //------------------------ // startup_INS_ground(); // read the radio to set trims // --------------------------- if (g.trim_rc_at_start != 0) { trim_radio(); } // Save the settings for in-air restart // ------------------------------------ //save_EEPROM_groundstart(); // initialise mission library mission.init(); // reset last heartbeat time, so we don't trigger failsafe on slow // startup failsafe.last_heartbeat_ms = millis(); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); gcs_send_text(MAV_SEVERITY_INFO,"Ready to fly"); } enum FlightMode Plane::get_previous_mode() { return previous_mode; } void Plane::set_mode(enum FlightMode mode, mode_reason_t reason) { if(control_mode == mode) { // don't switch modes if we are already in the correct mode. return; } if(g.auto_trim > 0 && control_mode == MANUAL) trim_control_surfaces(); // perform any cleanup required for prev flight mode exit_mode(control_mode); // cancel inverted flight auto_state.inverted_flight = false; // don't cross-track when starting a mission auto_state.next_wp_no_crosstrack = true; // reset landing check auto_state.checked_for_autoland = false; // reset go around command landing.commanded_go_around = false; // not in pre-flare landing.pre_flare = false; // zero locked course steer_state.locked_course_err = 0; // reset crash detection crash_state.is_crashed = false; crash_state.impact_detected = false; // reset external attitude guidance guided_state.last_forced_rpy_ms.zero(); guided_state.last_forced_throttle_ms = 0; // set mode previous_mode = control_mode; control_mode = mode; previous_mode_reason = control_mode_reason; control_mode_reason = reason; #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.update_control_mode(control_mode); #endif if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) { // restore last gains autotune_restore(); } // zero initial pitch and highest airspeed on mode change auto_state.highest_airspeed = 0; auto_state.initial_pitch_cd = ahrs.pitch_sensor; // disable taildrag takeoff on mode change auto_state.fbwa_tdrag_takeoff_mode = false; // start with previous WP at current location prev_WP_loc = current_loc; // new mode means new loiter loiter.start_time_ms = 0; // assume non-VTOL mode auto_state.vtol_mode = false; auto_state.vtol_loiter = false; switch(control_mode) { case INITIALISING: auto_throttle_mode = true; auto_navigation_mode = false; break; case MANUAL: case STABILIZE: case TRAINING: case FLY_BY_WIRE_A: auto_throttle_mode = false; auto_navigation_mode = false; break; case AUTOTUNE: auto_throttle_mode = false; auto_navigation_mode = false; autotune_start(); break; case ACRO: auto_throttle_mode = false; auto_navigation_mode = false; acro_state.locked_roll = false; acro_state.locked_pitch = false; break; case CRUISE: auto_throttle_mode = true; auto_navigation_mode = false; cruise_state.locked_heading = false; cruise_state.lock_timer_ms = 0; set_target_altitude_current(); break; case FLY_BY_WIRE_B: auto_throttle_mode = true; auto_navigation_mode = false; set_target_altitude_current(); break; case CIRCLE: // the altitude to circle at is taken from the current altitude auto_throttle_mode = true; auto_navigation_mode = true; next_WP_loc.alt = current_loc.alt; break; case AUTO: auto_throttle_mode = true; auto_navigation_mode = true; if (quadplane.available() && quadplane.enable == 2) { auto_state.vtol_mode = true; } else { auto_state.vtol_mode = false; } next_WP_loc = prev_WP_loc = current_loc; // start or resume the mission, based on MIS_AUTORESET mission.start_or_resume(); break; case RTL: auto_throttle_mode = true; auto_navigation_mode = true; prev_WP_loc = current_loc; do_RTL(get_RTL_altitude()); break; case LOITER: auto_throttle_mode = true; auto_navigation_mode = true; do_loiter_at_location(); break; case AVOID_ADSB: case GUIDED: auto_throttle_mode = true; auto_navigation_mode = true; guided_throttle_passthru = false; /* when entering guided mode we set the target as the current location. This matches the behaviour of the copter code */ guided_WP_loc = current_loc; set_guided_WP(); break; case QSTABILIZE: case QHOVER: case QLOITER: case QLAND: case QRTL: auto_navigation_mode = false; if (!quadplane.init_mode()) { control_mode = previous_mode; } else { auto_throttle_mode = false; auto_state.vtol_mode = true; } break; } // start with throttle suppressed in auto_throttle modes throttle_suppressed = auto_throttle_mode; adsb.set_is_auto_mode(auto_navigation_mode); if (should_log(MASK_LOG_MODE)) DataFlash.Log_Write_Mode(control_mode); // reset attitude integrators on mode change rollController.reset_I(); pitchController.reset_I(); yawController.reset_I(); steerController.reset_I(); } /* set_mode() wrapper for MAVLink SET_MODE */ bool Plane::mavlink_set_mode(uint8_t mode) { switch (mode) { case MANUAL: case CIRCLE: case STABILIZE: case TRAINING: case ACRO: case FLY_BY_WIRE_A: case AUTOTUNE: case FLY_BY_WIRE_B: case CRUISE: case AVOID_ADSB: case GUIDED: case AUTO: case RTL: case LOITER: case QSTABILIZE: case QHOVER: case QLOITER: case QLAND: case QRTL: set_mode((enum FlightMode)mode, MODE_REASON_GCS_COMMAND); return true; } return false; } // exit_mode - perform any cleanup required when leaving a flight mode void Plane::exit_mode(enum FlightMode mode) { // stop mission when we leave auto if (mode == AUTO) { if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND) { landing.restart_landing_sequence(); } } auto_state.started_flying_in_auto_ms = 0; } } void Plane::check_long_failsafe() { uint32_t tnow = millis(); // only act on changes // ------------------- if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_PREFLARE && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) { if (failsafe.state == FAILSAFE_SHORT && (tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_LONG, MODE_REASON_RADIO_FAILSAFE); } else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_AUTO && control_mode == AUTO && failsafe.last_heartbeat_ms != 0 && (tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_GCS, MODE_REASON_GCS_FAILSAFE); } else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HEARTBEAT && failsafe.last_heartbeat_ms != 0 && (tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_GCS, MODE_REASON_GCS_FAILSAFE); } else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI && gcs[0].last_radio_status_remrssi_ms != 0 && (tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) { failsafe_long_on_event(FAILSAFE_GCS, MODE_REASON_GCS_FAILSAFE); } } else { // We do not change state but allow for user to change mode if (failsafe.state == FAILSAFE_GCS && (tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) { failsafe.state = FAILSAFE_NONE; } else if (failsafe.state == FAILSAFE_LONG && !failsafe.ch3_failsafe) { failsafe.state = FAILSAFE_NONE; } } } void Plane::check_short_failsafe() { // only act on changes // ------------------- if(failsafe.state == FAILSAFE_NONE && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_PREFLARE && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) { // The condition is checked and the flag ch3_failsafe is set in radio.cpp if(failsafe.ch3_failsafe) { failsafe_short_on_event(FAILSAFE_SHORT, MODE_REASON_RADIO_FAILSAFE); } } if(failsafe.state == FAILSAFE_SHORT) { if(!failsafe.ch3_failsafe) { failsafe_short_off_event(MODE_REASON_RADIO_FAILSAFE); } } } void Plane::startup_INS_ground(void) { #if HIL_SUPPORT if (g.hil_mode == 1) { while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); hal.scheduler->delay(1000); } } #endif if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) { gcs_send_text(MAV_SEVERITY_ALERT, "Beginning INS calibration. Do not move plane"); hal.scheduler->delay(100); } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); ahrs.set_wind_estimation(true); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); // read Baro pressure at ground //----------------------------- init_barometer(true); if (airspeed.enabled()) { // initialize airspeed sensor // -------------------------- zero_airspeed(true); } else { gcs_send_text(MAV_SEVERITY_WARNING,"No airspeed"); } } // updates the status of the notify objects // should be called at 50hz void Plane::update_notify() { notify.update(); } void Plane::resetPerfData(void) { perf.mainLoop_count = 0; perf.G_Dt_max = 0; perf.G_Dt_min = 0; perf.num_long = 0; perf.start_ms = millis(); perf.last_log_dropped = DataFlash.num_dropped(); } void Plane::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; } void Plane::print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print("Manual"); break; case CIRCLE: port->print("Circle"); break; case STABILIZE: port->print("Stabilize"); break; case TRAINING: port->print("Training"); break; case ACRO: port->print("ACRO"); break; case FLY_BY_WIRE_A: port->print("FBW_A"); break; case AUTOTUNE: port->print("AUTOTUNE"); break; case FLY_BY_WIRE_B: port->print("FBW_B"); break; case CRUISE: port->print("CRUISE"); break; case AUTO: port->print("AUTO"); break; case RTL: port->print("RTL"); break; case LOITER: port->print("Loiter"); break; case AVOID_ADSB: port->print("AVOID_ADSB"); break; case GUIDED: port->print("Guided"); break; case QSTABILIZE: port->print("QStabilize"); break; case QHOVER: port->print("QHover"); break; case QLOITER: port->print("QLoiter"); break; case QLAND: port->print("QLand"); break; case QRTL: port->print("QRTL"); break; default: port->printf("Mode(%u)", (unsigned)mode); break; } } #if CLI_ENABLED == ENABLED void Plane::print_comma(void) { cliSerial->print(","); } #endif /* write to a servo */ void Plane::servo_write(uint8_t ch, uint16_t pwm) { #if HIL_SUPPORT if (g.hil_mode==1 && !g.hil_servos) { if (ch < 8) { RC_Channel::rc_channel(ch)->set_radio_out(pwm); } return; } #endif hal.rcout->enable_ch(ch); hal.rcout->write(ch, pwm); } /* should we log a message type now? */ bool Plane::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = hal.util->get_soft_armed() || DataFlash.log_while_disarmed(); if (ret && !DataFlash.logging_started() && !in_log_download) { start_logging(); } return ret; #else return false; #endif } /* return throttle percentage from 0 to 100 for normal use and -100 to 100 when using reverse thrust */ int8_t Plane::throttle_percentage(void) { if (quadplane.in_vtol_mode()) { return quadplane.throttle_percentage(); } // to get the real throttle we need to use norm_output() which // returns a number from -1 to 1. if (aparm.throttle_min >= 0) { return constrain_int16(50*(channel_throttle->norm_output()+1), 0, 100); } else { // reverse thrust return constrain_int16(100*channel_throttle->norm_output(), -100, 100); } } /* update AHRS soft arm state and log as needed */ void Plane::change_arm_state(void) { Log_Arm_Disarm(); update_soft_armed(); quadplane.set_armed(hal.util->get_soft_armed()); } /* arm motors */ bool Plane::arm_motors(AP_Arming::ArmingMethod method) { if (!arming.arm(method)) { return false; } // only log if arming was successful channel_throttle->enable_out(); change_arm_state(); return true; } /* disarm motors */ bool Plane::disarm_motors(void) { if (!arming.disarm()) { return false; } if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) { channel_throttle->disable_out(); } if (control_mode != AUTO) { // reset the mission on disarm if we are not in auto mission.reset(); } // suppress the throttle in auto-throttle modes throttle_suppressed = auto_throttle_mode; //only log if disarming was successful change_arm_state(); // reload target airspeed which could have been modified by a mission plane.aparm.airspeed_cruise_cm.load(); return true; }