#include "Blimp.h" #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from AP_Logger log memory // Code to interact with the user to dump or erase logs struct PACKED log_FINI { LOG_PACKET_HEADER; uint64_t time_us; float Right; float Front; float Down; float Yaw; }; struct PACKED log_FINO { LOG_PACKET_HEADER; uint64_t time_us; float Fin1_Amp; float Fin1_Off; float Fin2_Amp; float Fin2_Off; float Fin3_Amp; float Fin3_Off; float Fin4_Amp; float Fin4_Off; }; //Write a fin input packet void Blimp::Write_FINI(float right, float front, float down, float yaw) { const struct log_FINI pkt{ LOG_PACKET_HEADER_INIT(LOG_FINI_MSG), time_us : AP_HAL::micros64(), Right : right, Front : front, Down : down, Yaw : yaw }; logger.WriteBlock(&pkt, sizeof(pkt)); } //Write a fin output packet void Blimp::Write_FINO(float *amp, float *off) { const struct log_FINO pkt{ LOG_PACKET_HEADER_INIT(LOG_FINO_MSG), time_us : AP_HAL::micros64(), Fin1_Amp : amp[0], Fin1_Off : off[0], Fin2_Amp : amp[1], Fin2_Off : off[1], Fin3_Amp : amp[2], Fin3_Off : off[2], Fin4_Amp : amp[3], Fin4_Off : off[3], }; logger.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float throttle_in; float angle_boost; float throttle_out; float throttle_hover; float desired_alt; float inav_alt; int32_t baro_alt; float desired_rangefinder_alt; float rangefinder_alt; float terr_alt; int16_t target_climb_rate; int16_t climb_rate; }; // Write PID packets void Blimp::Log_Write_PIDs() { logger.Write_PID(LOG_PIVN_MSG, pid_vel_xy.get_pid_info_x()); logger.Write_PID(LOG_PIVE_MSG, pid_vel_xy.get_pid_info_y()); logger.Write_PID(LOG_PIVD_MSG, pid_vel_z.get_pid_info()); logger.Write_PID(LOG_PIVY_MSG, pid_vel_yaw.get_pid_info()); logger.Write_PID(LOG_PIDN_MSG, pid_pos_xy.get_pid_info_x()); logger.Write_PID(LOG_PIDE_MSG, pid_pos_xy.get_pid_info_y()); logger.Write_PID(LOG_PIDD_MSG, pid_pos_z.get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, pid_pos_yaw.get_pid_info()); } // Write an attitude packet void Blimp::Log_Write_Attitude() { } // Write an EKF and POS packet void Blimp::Log_Write_EKF_POS() { AP::ahrs().Log_Write(); ahrs.Write_AHRS2(); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.Log_Write_SIMSTATE(); #endif ahrs.Write_POS(); } struct PACKED log_MotBatt { LOG_PACKET_HEADER; uint64_t time_us; float lift_max; float bat_volt; float bat_res; float th_limit; }; // Write an rate packet void Blimp::Log_Write_MotBatt() { } struct PACKED log_Data_Int16t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; int16_t data_value; }; // Write an int16_t data packet UNUSED_FUNCTION void Blimp::Log_Write_Data(LogDataID id, int16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT16_MSG), time_us : AP_HAL::micros64(), id : (uint8_t)id, data_value : value }; logger.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt16t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; uint16_t data_value; }; // Write an uint16_t data packet UNUSED_FUNCTION void Blimp::Log_Write_Data(LogDataID id, uint16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT16_MSG), time_us : AP_HAL::micros64(), id : (uint8_t)id, data_value : value }; logger.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Int32t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; int32_t data_value; }; // Write an int32_t data packet void Blimp::Log_Write_Data(LogDataID id, int32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT32_MSG), time_us : AP_HAL::micros64(), id : (uint8_t)id, data_value : value }; logger.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt32t { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; uint32_t data_value; }; // Write a uint32_t data packet void Blimp::Log_Write_Data(LogDataID id, uint32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT32_MSG), time_us : AP_HAL::micros64(), id : (uint8_t)id, data_value : value }; logger.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Float { LOG_PACKET_HEADER; uint64_t time_us; uint8_t id; float data_value; }; // Write a float data packet UNUSED_FUNCTION void Blimp::Log_Write_Data(LogDataID id, float value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Float pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_FLOAT_MSG), time_us : AP_HAL::micros64(), id : (uint8_t)id, data_value : value }; logger.WriteCriticalBlock(&pkt, sizeof(pkt)); } } struct PACKED log_ParameterTuning { LOG_PACKET_HEADER; uint64_t time_us; uint8_t parameter; // parameter we are tuning, e.g. 39 is CH6_CIRCLE_RATE float tuning_value; // normalized value used inside tuning() function float tuning_min; // tuning minimum value float tuning_max; // tuning maximum value }; void Blimp::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max) { struct log_ParameterTuning pkt_tune = { LOG_PACKET_HEADER_INIT(LOG_PARAMTUNE_MSG), time_us : AP_HAL::micros64(), parameter : param, tuning_value : tuning_val, tuning_min : tune_min, tuning_max : tune_max }; logger.WriteBlock(&pkt_tune, sizeof(pkt_tune)); } // logs when baro or compass becomes unhealthy void Blimp::Log_Sensor_Health() { // check baro if (sensor_health.baro != barometer.healthy()) { sensor_health.baro = barometer.healthy(); AP::logger().Write_Error(LogErrorSubsystem::BARO, (sensor_health.baro ? LogErrorCode::ERROR_RESOLVED : LogErrorCode::UNHEALTHY)); } // check compass if (sensor_health.compass != compass.healthy()) { sensor_health.compass = compass.healthy(); AP::logger().Write_Error(LogErrorSubsystem::COMPASS, (sensor_health.compass ? LogErrorCode::ERROR_RESOLVED : LogErrorCode::UNHEALTHY)); } // check primary GPS if (sensor_health.primary_gps != gps.primary_sensor()) { sensor_health.primary_gps = gps.primary_sensor(); AP::logger().Write_Event(LogEvent::GPS_PRIMARY_CHANGED); } } struct PACKED log_SysIdD { LOG_PACKET_HEADER; uint64_t time_us; float waveform_time; float waveform_sample; float waveform_freq; float angle_x; float angle_y; float angle_z; float accel_x; float accel_y; float accel_z; }; // Write an rate packet void Blimp::Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z) { #if MODE_SYSTEMID_ENABLED == ENABLED struct log_SysIdD pkt_sidd = { LOG_PACKET_HEADER_INIT(LOG_SYSIDD_MSG), time_us : AP_HAL::micros64(), waveform_time : waveform_time, waveform_sample : waveform_sample, waveform_freq : waveform_freq, angle_x : angle_x, angle_y : angle_y, angle_z : angle_z, accel_x : accel_x, accel_y : accel_y, accel_z : accel_z }; logger.WriteBlock(&pkt_sidd, sizeof(pkt_sidd)); #endif } struct PACKED log_SysIdS { LOG_PACKET_HEADER; uint64_t time_us; uint8_t systemID_axis; float waveform_magnitude; float frequency_start; float frequency_stop; float time_fade_in; float time_const_freq; float time_record; float time_fade_out; }; // Write an rate packet void Blimp::Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out) { #if MODE_SYSTEMID_ENABLED == ENABLED struct log_SysIdS pkt_sids = { LOG_PACKET_HEADER_INIT(LOG_SYSIDS_MSG), time_us : AP_HAL::micros64(), systemID_axis : systemID_axis, waveform_magnitude : waveform_magnitude, frequency_start : frequency_start, frequency_stop : frequency_stop, time_fade_in : time_fade_in, time_const_freq : time_const_freq, time_record : time_record, time_fade_out : time_fade_out }; logger.WriteBlock(&pkt_sids, sizeof(pkt_sids)); #endif } // type and unit information can be found in // libraries/AP_Logger/Logstructure.h; search for "log_Units" for // units and "Format characters" for field type information const struct LogStructure Blimp::log_structure[] = { LOG_COMMON_STRUCTURES, // @LoggerMessage: FINI // @Description: Fin input // @Field: TimeUS: Time since system startup // @Field: R: Right // @Field: F: Front // @Field: D: Down // @Field: Y: Yaw { LOG_FINI_MSG, sizeof(log_FINI), "FINI", "Qffff", "TimeUS,R,F,D,Y", "s----", "F----" }, // @LoggerMessage: FINO // @Description: Fin output // @Field: TimeUS: Time since system startup // @Field: F1A: Fin 1 Amplitude // @Field: F1O: Fin 1 Offset // @Field: F2A: Fin 2 Amplitude // @Field: F2O: Fin 2 Offset // @Field: F3A: Fin 3 Amplitude // @Field: F3O: Fin 3 Offset // @Field: F4A: Fin 4 Amplitude // @Field: F4O: Fin 4 Offset { LOG_FINO_MSG, sizeof(log_FINO), "FINO", "Qffffffff", "TimeUS,F1A,F1O,F2A,F2O,F3A,F3O,F4A,F4O", "s--------", "F--------" }, // @LoggerMessage: PIDD,PIVN,PIVE,PIVD,PIVY // @Description: Proportional/Integral/Derivative gain values // @Field: TimeUS: Time since system startup // @Field: Tar: desired value // @Field: Act: achieved value // @Field: Err: error between target and achieved // @Field: P: proportional part of PID // @Field: I: integral part of PID // @Field: D: derivative part of PID // @Field: FF: controller feed-forward portion of response // @Field: Dmod: scaler applied to D gain to reduce limit cycling // @Field: SRate: slew rate // @Field: Limit: 1 if I term is limited due to output saturation { LOG_PIDD_MSG, sizeof(log_PID), "PIDD", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS }, { LOG_PIVN_MSG, sizeof(log_PID), "PIVN", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS }, { LOG_PIVE_MSG, sizeof(log_PID), "PIVE", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS }, { LOG_PIVD_MSG, sizeof(log_PID), "PIVD", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS }, { LOG_PIVY_MSG, sizeof(log_PID), "PIVY", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS }, // @LoggerMessage: PTUN // @Description: Parameter Tuning information // @URL: https://ardupilot.org/blimp/docs/tuning.html#in-flight-tuning // @Field: TimeUS: Time since system startup // @Field: Param: Parameter being tuned // @Field: TunVal: Normalized value used inside tuning() function // @Field: TunMin: Tuning minimum limit // @Field: TunMax: Tuning maximum limit { LOG_PARAMTUNE_MSG, sizeof(log_ParameterTuning), "PTUN", "QBfff", "TimeUS,Param,TunVal,TunMin,TunMax", "s----", "F----" }, // @LoggerMessage: CTUN // @Description: Control Tuning information // @Field: TimeUS: Time since system startup // @Field: ThI: throttle input // @Field: ABst: angle boost // @Field: ThO: throttle output // @Field: ThH: calculated hover throttle // @Field: DAlt: desired altitude // @Field: Alt: achieved altitude // @Field: BAlt: barometric altitude // @Field: DSAlt: desired rangefinder altitude // @Field: SAlt: achieved rangefinder altitude // @Field: TAlt: terrain altitude // @Field: DCRt: desired climb rate // @Field: CRt: climb rate // @LoggerMessage: D16 // @Description: Generic 16-bit-signed-integer storage // @Field: TimeUS: Time since system startup // @Field: Id: Data type identifier // @Field: Value: Value // @LoggerMessage: DU16 // @Description: Generic 16-bit-unsigned-integer storage // @Field: TimeUS: Time since system startup // @Field: Id: Data type identifier // @Field: Value: Value // @LoggerMessage: D32 // @Description: Generic 32-bit-signed-integer storage // @Field: TimeUS: Time since system startup // @Field: Id: Data type identifier // @Field: Value: Value // @LoggerMessage: DFLT // @Description: Generic float storage // @Field: TimeUS: Time since system startup // @Field: Id: Data type identifier // @Field: Value: Value // @LoggerMessage: DU32 // @Description: Generic 32-bit-unsigned-integer storage // @Field: TimeUS: Time since system startup // @Field: Id: Data type identifier // @Field: Value: Value { LOG_CONTROL_TUNING_MSG, sizeof(log_Control_Tuning), "CTUN", "Qffffffefffhh", "TimeUS,ThI,ABst,ThO,ThH,DAlt,Alt,BAlt,DSAlt,SAlt,TAlt,DCRt,CRt", "s----mmmmmmnn", "F----00B000BB" }, // @LoggerMessage: MOTB // @Description: Battery information // @Field: TimeUS: Time since system startup // @Field: LiftMax: Maximum motor compensation gain // @Field: BatVolt: Ratio betwen detected battery voltage and maximum battery voltage // @Field: BatRes: Estimated battery resistance // @Field: ThLimit: Throttle limit set due to battery current limitations { LOG_MOTBATT_MSG, sizeof(log_MotBatt), "MOTB", "Qffff", "TimeUS,LiftMax,BatVolt,BatRes,ThLimit", "s-vw-", "F-00-" }, { LOG_DATA_INT16_MSG, sizeof(log_Data_Int16t), "D16", "QBh", "TimeUS,Id,Value", "s--", "F--" }, { LOG_DATA_UINT16_MSG, sizeof(log_Data_UInt16t), "DU16", "QBH", "TimeUS,Id,Value", "s--", "F--" }, { LOG_DATA_INT32_MSG, sizeof(log_Data_Int32t), "D32", "QBi", "TimeUS,Id,Value", "s--", "F--" }, { LOG_DATA_UINT32_MSG, sizeof(log_Data_UInt32t), "DU32", "QBI", "TimeUS,Id,Value", "s--", "F--" }, { LOG_DATA_FLOAT_MSG, sizeof(log_Data_Float), "DFLT", "QBf", "TimeUS,Id,Value", "s--", "F--" }, // @LoggerMessage: SIDD // @Description: System ID data // @Field: TimeUS: Time since system startup // @Field: Time: Time reference for waveform // @Field: Targ: Current waveform sample // @Field: F: Instantaneous waveform frequency // @Field: Gx: Delta angle, X-Axis // @Field: Gy: Delta angle, Y-Axis // @Field: Gz: Delta angle, Z-Axis // @Field: Ax: Delta velocity, X-Axis // @Field: Ay: Delta velocity, Y-Axis // @Field: Az: Delta velocity, Z-Axis { LOG_SYSIDD_MSG, sizeof(log_SysIdD), "SIDD", "Qfffffffff", "TimeUS,Time,Targ,F,Gx,Gy,Gz,Ax,Ay,Az", "ss-zkkkooo", "F---------" }, // @LoggerMessage: SIDS // @Description: System ID settings // @Field: TimeUS: Time since system startup // @Field: Ax: The axis which is being excited // @Field: Mag: Magnitude of the chirp waveform // @Field: FSt: Frequency at the start of chirp // @Field: FSp: Frequency at the end of chirp // @Field: TFin: Time to reach maximum amplitude of chirp // @Field: TC: Time at constant frequency before chirp starts // @Field: TR: Time taken to complete chirp waveform // @Field: TFout: Time to reach zero amplitude after chirp finishes { LOG_SYSIDS_MSG, sizeof(log_SysIdS), "SIDS", "QBfffffff", "TimeUS,Ax,Mag,FSt,FSp,TFin,TC,TR,TFout", "s--ssssss", "F--------" }, // // @LoggerMessage: GUID // // @Description: Guided mode target information // // @Field: TimeUS: Time since system startup // // @Field: Type: Type of guided mode // // @Field: pX: Target position, X-Axis // // @Field: pY: Target position, Y-Axis // // @Field: pZ: Target position, Z-Axis // // @Field: vX: Target velocity, X-Axis // // @Field: vY: Target velocity, Y-Axis // // @Field: vZ: Target velocity, Z-Axis // { LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget), // "GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ", "s-mmmnnn", "F-BBBBBB" }, }; void Blimp::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by AP_Logger logger.Write_MessageF("Frame: %s", get_frame_string()); logger.Write_Mode((uint8_t)control_mode, control_mode_reason); ahrs.Log_Write_Home_And_Origin(); gps.Write_AP_Logger_Log_Startup_messages(); } void Blimp::log_init(void) { logger.Init(log_structure, ARRAY_SIZE(log_structure)); } #else // LOGGING_ENABLED void Blimp::Log_Write_Performance() {} void Blimp::Log_Write_Attitude(void) {} void Blimp::Log_Write_PIDs(void) {} void Blimp::Log_Write_EKF_POS() {} void Blimp::Log_Write_MotBatt() {} void Blimp::Log_Write_Data(LogDataID id, int32_t value) {} void Blimp::Log_Write_Data(LogDataID id, uint32_t value) {} void Blimp::Log_Write_Data(LogDataID id, int16_t value) {} void Blimp::Log_Write_Data(LogDataID id, uint16_t value) {} void Blimp::Log_Write_Data(LogDataID id, float value) {} void Blimp::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max) {} void Blimp::Log_Sensor_Health() {} void Blimp::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {} void Blimp::Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out) {} void Blimp::Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z) {} void Blimp::Log_Write_Vehicle_Startup_Messages() {} void Blimp::log_init(void) {} #endif // LOGGING_ENABLED