// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Rover.h" /* allow for runtime change of control channel ordering */ void Rover::set_control_channels(void) { channel_steer = RC_Channel::rc_channel(rcmap.roll()-1); channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1); channel_learn = RC_Channel::rc_channel(g.learn_channel-1); // set rc channel ranges channel_steer->set_angle(SERVO_MAX); channel_throttle->set_angle(100); // For a rover safety is TRIM throttle if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) { hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->get_radio_trim()); if (g.skid_steer_out) { hal.rcout->set_safety_pwm(1UL<<(rcmap.roll()-1), channel_steer->get_radio_trim()); } } // setup correct scaling for ESCs like the UAVCAN PX4ESC which // take a proportion of speed. hal.rcout->set_esc_scaling(channel_throttle->get_radio_min(), channel_throttle->get_radio_max()); } void Rover::init_rc_in() { // set rc dead zones channel_steer->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); //set auxiliary ranges update_aux(); } void Rover::init_rc_out() { RC_Channel::rc_channel(CH_1)->enable_out(); RC_Channel::rc_channel(CH_3)->enable_out(); if (arming.arming_required() != AP_Arming::YES_ZERO_PWM) { channel_throttle->enable_out(); if (g.skid_steer_out) { channel_steer->enable_out(); } } RC_Channel::output_trim_all(); // setup PWM values to send if the FMU firmware dies RC_Channel::setup_failsafe_trim_all(); // output throttle trim when safety off if arming // is setup for min on disarm. MIN is from plane where MIN is effectively no throttle. // For Rover's no throttle means TRIM as rovers can go backwards i.e. MIN throttle is // full speed backward. if (arming.arming_required() == AP_Arming::YES_MIN_PWM) { hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->get_radio_trim()); if (g.skid_steer_out) { hal.rcout->set_safety_pwm(1UL<<(rcmap.roll()-1), channel_steer->get_radio_trim()); } } } /* check for driver input on rudder/steering stick for arming/disarming */ void Rover::rudder_arm_disarm_check() { // In Rover we need to check that its set to the throttle trim and within the DZ // if throttle is not within trim dz, then pilot cannot rudder arm/disarm if (!channel_throttle->in_trim_dz()) { rudder_arm_timer = 0; return; } // if not in a manual throttle mode then disallow rudder arming/disarming if (auto_throttle_mode) { rudder_arm_timer = 0; return; } if (!arming.is_armed()) { // when not armed, full right rudder starts arming counter if (channel_steer->get_control_in() > 4000) { uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { //time to arm! arm_motors(AP_Arming::RUDDER); rudder_arm_timer = 0; } } else { // not at full right rudder rudder_arm_timer = 0; } } else if (!motor_active() & !g.skid_steer_out) { // when armed and motor not active (not moving), full left rudder starts disarming counter // This is disabled for skid steering otherwise when tring to turn a skid steering rover around // the rover would disarm if (channel_steer->get_control_in() < -4000) { uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { //time to disarm! disarm_motors(); rudder_arm_timer = 0; } } else { // not at full left rudder rudder_arm_timer = 0; } } } void Rover::read_radio() { if (!hal.rcin->new_input()) { control_failsafe(channel_throttle->get_radio_in()); return; } failsafe.last_valid_rc_ms = AP_HAL::millis(); RC_Channel::set_pwm_all(); control_failsafe(channel_throttle->get_radio_in()); channel_throttle->set_servo_out(channel_throttle->get_control_in()); // Check if the throttle value is above 50% and we need to nudge // Make sure its above 50% in the direction we are travelling if ((abs(channel_throttle->get_servo_out()) > 50) && (((channel_throttle->get_servo_out() < 0) && in_reverse) || ((channel_throttle->get_servo_out() > 0) && !in_reverse))) { throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((fabsf(channel_throttle->norm_input())-0.5f) / 0.5f); } else { throttle_nudge = 0; } if (g.skid_steer_in) { // convert the two radio_in values from skid steering values /* mixing rule: steering = motor1 - motor2 throttle = 0.5*(motor1 + motor2) motor1 = throttle + 0.5*steering motor2 = throttle - 0.5*steering */ float motor1 = channel_steer->norm_input(); float motor2 = channel_throttle->norm_input(); float steering_scaled = motor1 - motor2; float throttle_scaled = 0.5f*(motor1 + motor2); int16_t steer = channel_steer->get_radio_trim(); int16_t thr = channel_throttle->get_radio_trim(); if (steering_scaled > 0.0f) { steer += steering_scaled*(channel_steer->get_radio_max()-channel_steer->get_radio_trim()); } else { steer += steering_scaled*(channel_steer->get_radio_trim()-channel_steer->get_radio_min()); } if (throttle_scaled > 0.0f) { thr += throttle_scaled*(channel_throttle->get_radio_max()-channel_throttle->get_radio_trim()); } else { thr += throttle_scaled*(channel_throttle->get_radio_trim()-channel_throttle->get_radio_min()); } channel_steer->set_pwm(steer); channel_throttle->set_pwm(thr); } rudder_arm_disarm_check(); } void Rover::control_failsafe(uint16_t pwm) { if (!g.fs_throttle_enabled) { // no throttle failsafe return; } // Check for failsafe condition based on loss of GCS control if (rc_override_active) { failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500); } else if (g.fs_throttle_enabled) { bool failed = pwm < (uint16_t)g.fs_throttle_value; if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 2000) { failed = true; } failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed); } } /* return true if throttle level is below throttle failsafe threshold or RC input is invalid */ bool Rover::throttle_failsafe_active(void) { if (!g.fs_throttle_enabled) { return false; } if (millis() - failsafe.last_valid_rc_ms > 1000) { // we haven't had a valid RC frame for 1 seconds return true; } if (channel_throttle->get_reverse()) { return channel_throttle->get_radio_in() >= g.fs_throttle_value; } return channel_throttle->get_radio_in() <= g.fs_throttle_value; } void Rover::trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if (channel_steer->get_radio_in() > 1400) { channel_steer->set_radio_trim(channel_steer->get_radio_in()); // save to eeprom channel_steer->save_eeprom(); } } void Rover::trim_radio() { for (int y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); }