#include "AP_Baro_DroneCAN.h" #if AP_BARO_DRONECAN_ENABLED #include <AP_CANManager/AP_CANManager.h> #include <AP_BoardConfig/AP_BoardConfig.h> #include "AP_Baro_SITL.h" #include <AP_Vehicle/AP_Vehicle_Type.h> extern const AP_HAL::HAL& hal; #define LOG_TAG "Baro" AP_Baro_DroneCAN::DetectedModules AP_Baro_DroneCAN::_detected_modules[]; HAL_Semaphore AP_Baro_DroneCAN::_sem_registry; /* constructor - registers instance at top Baro driver */ AP_Baro_DroneCAN::AP_Baro_DroneCAN(AP_Baro &baro) : AP_Baro_Backend(baro) {} void AP_Baro_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan) { if (ap_dronecan == nullptr) { return; } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_pressure, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("pressure_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_temperature, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("temperature_sub"); } } AP_Baro_Backend* AP_Baro_DroneCAN::probe(AP_Baro &baro) { WITH_SEMAPHORE(_sem_registry); AP_Baro_DroneCAN* backend = nullptr; for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_dronecan != nullptr) { backend = NEW_NOTHROW AP_Baro_DroneCAN(baro); if (backend == nullptr) { AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "Failed register DroneCAN Baro Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_dronecan->get_driver_index()); } else { _detected_modules[i].driver = backend; backend->_pressure = 0; backend->_pressure_count = 0; backend->_ap_dronecan = _detected_modules[i].ap_dronecan; backend->_node_id = _detected_modules[i].node_id; backend->_instance = backend->_frontend.register_sensor(); backend->set_bus_id(backend->_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN, _detected_modules[i].ap_dronecan->get_driver_index(), backend->_node_id, 0)); AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "Registered DroneCAN Baro Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_dronecan->get_driver_index()); } break; } } return backend; } AP_Baro_DroneCAN* AP_Baro_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id, bool create_new) { if (ap_dronecan == nullptr) { return nullptr; } for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) { return _detected_modules[i].driver; } } if (create_new) { bool already_detected = false; //Check if there's an empty spot for possible registration for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) { //Already Detected already_detected = true; break; } } if (!already_detected) { for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].ap_dronecan == nullptr) { _detected_modules[i].ap_dronecan = ap_dronecan; _detected_modules[i].node_id = node_id; break; } } } } return nullptr; } void AP_Baro_DroneCAN::_update_and_wrap_accumulator(float *accum, float val, uint8_t *count, const uint8_t max_count) { *accum += val; *count += 1; if (*count == max_count) { *count = max_count / 2; *accum = *accum / 2; } } void AP_Baro_DroneCAN::handle_pressure(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_air_data_StaticPressure &msg) { AP_Baro_DroneCAN* driver; { WITH_SEMAPHORE(_sem_registry); driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, true); if (driver == nullptr) { return; } } { WITH_SEMAPHORE(driver->_sem_baro); _update_and_wrap_accumulator(&driver->_pressure, msg.static_pressure, &driver->_pressure_count, 32); driver->new_pressure = true; } } void AP_Baro_DroneCAN::handle_temperature(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_air_data_StaticTemperature &msg) { AP_Baro_DroneCAN* driver; { WITH_SEMAPHORE(_sem_registry); driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, false); if (driver == nullptr) { return; } } { WITH_SEMAPHORE(driver->_sem_baro); driver->_temperature = KELVIN_TO_C(msg.static_temperature); } } // Read the sensor void AP_Baro_DroneCAN::update(void) { float pressure = 0; WITH_SEMAPHORE(_sem_baro); if (new_pressure) { if (_pressure_count != 0) { pressure = _pressure / _pressure_count; _pressure_count = 0; _pressure = 0; } _copy_to_frontend(_instance, pressure, _temperature); _frontend.set_external_temperature(_temperature); new_pressure = false; } } #endif // AP_BARO_DRONECAN_ENABLED