#include "Plane.h" /* support for pullup after an alitude wait. Used for high altitude gliders */ #if AP_PLANE_GLIDER_PULLUP_ENABLED // Pullup control parameters const AP_Param::GroupInfo GliderPullup::var_info[] = { // @Param: ENABLE // @DisplayName: Enable pullup after altitude wait // @Description: Enable pullup after altitude wait // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("ENABLE", 1, GliderPullup, enable, 0, AP_PARAM_FLAG_ENABLE), // @Param: ELEV_OFS // @DisplayName: Elevator deflection used before starting pullup // @Description: Elevator deflection offset from -1 to 1 while waiting for airspeed to rise before starting close loop control of the pullup. // @Range: -1.0 1.0 // @User: Advanced AP_GROUPINFO("ELEV_OFS", 2, GliderPullup, elev_offset, 0.1f), // @Param: NG_LIM // @DisplayName: Maximum normal load factor during pullup // @Description: This is the nominal maximum value of normal load factor used during the closed loop pitch rate control of the pullup. // @Range: 1.0 4.0 // @User: Advanced AP_GROUPINFO("NG_LIM", 3, GliderPullup, ng_limit, 2.0f), // @Param: NG_JERK_LIM // @DisplayName: Maximum normal load factor rate of change during pullup // @Description: The normal load factor used for closed loop pitch rate control of the pullup will be ramped up to the value set by PUP_NG_LIM at the rate of change set by this parameter. The parameter value specified will be scaled internally by 1/EAS2TAS. // @Units: 1/s // @Range: 0.1 10.0 // @User: Advanced AP_GROUPINFO("NG_JERK_LIM", 4, GliderPullup, ng_jerk_limit, 4.0f), // @Param: PITCH // @DisplayName: Target pitch angle during pullup // @Description: The vehicle will attempt achieve this pitch angle during the pull-up maneouvre. // @Units: deg // @Range: -5 15 // @User: Advanced AP_GROUPINFO("PITCH", 5, GliderPullup, pitch_dem, 3), // @Param: ARSPD_START // @DisplayName: Pullup target airspeed // @Description: Target airspeed for initial airspeed wait // @Units: m/s // @Range: 0 100 // @User: Advanced AP_GROUPINFO("ARSPD_START", 6, GliderPullup, airspeed_start, 30), // @Param: PITCH_START // @DisplayName: Pullup target pitch // @Description: Target pitch for initial pullup // @Units: deg // @Range: -80 0 // @User: Advanced AP_GROUPINFO("PITCH_START", 7, GliderPullup, pitch_start, -60), AP_GROUPEND }; // constructor GliderPullup::GliderPullup(void) { AP_Param::setup_object_defaults(this, var_info); } /* return true if in a pullup manoeuvre at the end of NAV_ALTITUDE_WAIT */ bool GliderPullup::in_pullup(void) const { return plane.control_mode == &plane.mode_auto && plane.mission.get_current_nav_cmd().id == MAV_CMD_NAV_ALTITUDE_WAIT && stage != Stage::NONE; } /* start a pullup maneouvre, called when NAV_ALTITUDE_WAIT has reached altitude or exceeded descent rate */ bool GliderPullup::pullup_start(void) { if (enable != 1) { return false; } // release balloon SRV_Channels::set_output_scaled(SRV_Channel::k_lift_release, 100); stage = Stage::WAIT_AIRSPEED; plane.auto_state.idle_mode = false; float aspeed; if (!plane.ahrs.airspeed_estimate(aspeed)) { aspeed = -1; } gcs().send_text(MAV_SEVERITY_INFO, "Start pullup airspeed %.1fm/s at %.1fm AMSL", aspeed, plane.current_loc.alt*0.01); return true; } /* first stage pullup from balloon release, verify completion */ bool GliderPullup::verify_pullup(void) { const auto &ahrs = plane.ahrs; const auto ¤t_loc = plane.current_loc; const auto &aparm = plane.aparm; switch (stage) { case Stage::WAIT_AIRSPEED: { float aspeed; if (ahrs.airspeed_estimate(aspeed) && (aspeed > airspeed_start || ahrs.pitch_sensor*0.01 > pitch_start)) { gcs().send_text(MAV_SEVERITY_INFO, "Pullup airspeed %.1fm/s alt %.1fm AMSL", aspeed, current_loc.alt*0.01); stage = Stage::WAIT_PITCH; } return false; } case Stage::WAIT_PITCH: { if (ahrs.pitch_sensor*0.01 > pitch_start && fabsf(ahrs.roll_sensor*0.01) < 90) { gcs().send_text(MAV_SEVERITY_INFO, "Pullup pitch p=%.1f r=%.1f alt %.1fm AMSL", ahrs.pitch_sensor*0.01, ahrs.roll_sensor*0.01, current_loc.alt*0.01); stage = Stage::WAIT_LEVEL; } return false; } case Stage::PUSH_NOSE_DOWN: { if (fabsf(ahrs.roll_sensor*0.01) < aparm.roll_limit) { stage = Stage::WAIT_LEVEL; } return false; } case Stage::WAIT_LEVEL: { // When pitch has raised past lower limit used by speed controller, wait for airspeed to approach // target value before handing over control of pitch demand to speed controller bool pitchup_complete = ahrs.pitch_sensor*0.01 > MIN(0, aparm.pitch_limit_min); const float pitch_lag_time = 1.0f * sqrtf(ahrs.get_EAS2TAS()); float aspeed; const float aspeed_derivative = (ahrs.get_accel().x + GRAVITY_MSS * ahrs.get_DCM_rotation_body_to_ned().c.x) / ahrs.get_EAS2TAS(); bool airspeed_low = ahrs.airspeed_estimate(aspeed) ? (aspeed + aspeed_derivative * pitch_lag_time) < 0.01f * (float)plane.target_airspeed_cm : true; bool roll_control_lost = fabsf(ahrs.roll_sensor*0.01) > aparm.roll_limit; if (pitchup_complete && airspeed_low && !roll_control_lost) { gcs().send_text(MAV_SEVERITY_INFO, "Pullup level r=%.1f p=%.1f alt %.1fm AMSL", ahrs.roll_sensor*0.01, ahrs.pitch_sensor*0.01, current_loc.alt*0.01); break; } else if (pitchup_complete && roll_control_lost) { // push nose down and wait to get roll control back gcs().send_text(MAV_SEVERITY_ALERT, "Pullup level roll bad r=%.1f p=%.1f", ahrs.roll_sensor*0.01, ahrs.pitch_sensor*0.01); stage = Stage::PUSH_NOSE_DOWN; } return false; } case Stage::NONE: break; } // all done stage = Stage::NONE; return true; } /* stabilize during pullup from balloon drop */ void GliderPullup::stabilize_pullup(void) { const float speed_scaler = plane.get_speed_scaler(); switch (stage) { case Stage::WAIT_AIRSPEED: { plane.pitchController.reset_I(); plane.yawController.reset_I(); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_offset*4500); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); plane.nav_pitch_cd = 0; plane.nav_roll_cd = 0; SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(0, speed_scaler)); ng_demand = 0.0; break; } case Stage::WAIT_PITCH: { plane.yawController.reset_I(); plane.nav_roll_cd = 0; plane.nav_pitch_cd = 0; SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(0, speed_scaler)); float aspeed; const auto &ahrs = plane.ahrs; if (ahrs.airspeed_estimate(aspeed)) { // apply a rate of change limit to the ng pullup demand ng_demand += MAX(ng_jerk_limit / ahrs.get_EAS2TAS(), 0.1f) * plane.scheduler.get_loop_period_s(); ng_demand = MIN(ng_demand, ng_limit); const float VTAS_ref = ahrs.get_EAS2TAS() * aspeed; const float pullup_accel = ng_demand * GRAVITY_MSS; const float demanded_rate_dps = degrees(pullup_accel / VTAS_ref); const uint32_t elev_trim_offset_cd = 4500.0f * elev_offset * (1.0f - ng_demand / ng_limit); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_trim_offset_cd + plane.pitchController.get_rate_out(demanded_rate_dps, speed_scaler)); } else { SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_offset*4500); } break; } case Stage::PUSH_NOSE_DOWN: { plane.nav_pitch_cd = plane.aparm.pitch_limit_min*100; plane.stabilize_pitch(); plane.nav_roll_cd = 0; plane.stabilize_roll(); plane.stabilize_yaw(); ng_demand = 0.0f; break; } case Stage::WAIT_LEVEL: plane.nav_pitch_cd = MAX((plane.aparm.pitch_limit_min + 5), pitch_dem)*100; plane.stabilize_pitch(); plane.nav_roll_cd = 0; plane.stabilize_roll(); plane.stabilize_yaw(); ng_demand = 0.0f; break; case Stage::NONE: break; } // we have done stabilisation plane.last_stabilize_ms = AP_HAL::millis(); } #endif // AP_PLANE_GLIDER_PULLUP_ENABLED