/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_HAL/AP_HAL.h> #include "AP_WindVane_NMEA.h" #include <AP_SerialManager/AP_SerialManager.h> /* NMEA wind vane library, tested with Calypso Wired sensor, should also work with other NMEA wind sensors using the MWV message, heavily based on RangeFinder NMEA library */ // constructor AP_WindVane_NMEA::AP_WindVane_NMEA(AP_WindVane &frontend) : AP_WindVane_Backend(frontend) { } // init - performs any required initialization for this instance void AP_WindVane_NMEA::init(const AP_SerialManager& serial_manager) { uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_WindVane, 0); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_WindVane, 0)); } } void AP_WindVane_NMEA::update_direction() { // Only call update from here if it has not been called already by update speed if (_frontend._speed_sensor_type.get() != _frontend.Speed_type::WINDSPEED_NMEA) { update(); } } void AP_WindVane_NMEA::update_speed() { update(); } void AP_WindVane_NMEA::update() { if (uart == nullptr) { return; } // read any available lines from the windvane int16_t nbytes = uart->available(); while (nbytes-- > 0) { char c = uart->read(); if (decode(c)) { // user may not have NMEA selected for both speed and direction if (_frontend._direction_type.get() == _frontend.WindVaneType::WINDVANE_NMEA) { _frontend._direction_apparent_raw = wrap_PI(radians(_wind_dir_deg + _frontend._dir_analog_bearing_offset.get())); } if (_frontend._speed_sensor_type.get() == _frontend.Speed_type::WINDSPEED_NMEA) { _frontend._speed_apparent_raw = _speed_ms; } } } } // add a single character to the buffer and attempt to decode // returns true if a complete sentence was successfully decoded bool AP_WindVane_NMEA::decode(char c) { switch (c) { case ',': // end of a term, add to checksum _checksum ^= c; FALLTHROUGH; case '\r': case '\n': case '*': { if (_sentence_done) { return false; } // null terminate and decode latest term _term[_term_offset] = 0; bool valid_sentence = decode_latest_term(); // move onto next term _term_number++; _term_offset = 0; _term_is_checksum = (c == '*'); return valid_sentence; } case '$': // sentence begin _sentence_valid = false; _term_number = 0; _term_offset = 0; _checksum = 0; _term_is_checksum = false; _wind_dir_deg = -1.0f; _speed_ms = -1.0f; _sentence_done = false; return false; } // ordinary characters are added to term if (_term_offset < sizeof(_term) - 1) { _term[_term_offset++] = c; } if (!_term_is_checksum) { _checksum ^= c; } return false; } // decode the most recently consumed term // returns true if new sentence has just passed checksum test and is validated bool AP_WindVane_NMEA::decode_latest_term() { // handle the last term in a message if (_term_is_checksum) { _sentence_done = true; uint8_t checksum = 16 * char_to_hex(_term[0]) + char_to_hex(_term[1]); return ((checksum == _checksum) && _sentence_valid); } // the first term determines the sentence type if (_term_number == 0) { // the first two letters of the NMEA term are the talker ID. // we accept any two characters here. if (_term[0] < 'A' || _term[0] > 'Z' || _term[1] < 'A' || _term[1] > 'Z') { // unknown ID (we are actually expecting II) return false; } const char *term_type = &_term[2]; if (strcmp(term_type, "MWV") == 0) { // we found the sentence type for wind _sentence_valid = true; } return false; } // if this is not the sentence we want then wait for another if (!_sentence_valid) { return false; } switch (_term_number) { case 1: _wind_dir_deg = strtof(_term, NULL); // check for sensible value if (is_negative(_wind_dir_deg) || _wind_dir_deg > 360.0f) { _sentence_valid = false; } break; case 2: // we are expecting R for relative wind // (could be T for true wind, maybe add in the future...) if (_term[0] != 'R') { _sentence_valid = false; } break; case 3: _speed_ms = strtof(_term, NULL); break; case 4: if (_term[0] == 'K') { // convert from km/h to m/s _speed_ms *= KM_PER_HOUR_TO_M_PER_SEC; } else if (_term[0] == 'N') { // convert from Knots to m/s _speed_ms *= KNOTS_TO_M_PER_SEC; } // could also be M for m/s, but we want that anyway so nothing to do // check for sensible value if (is_negative(_speed_ms) || _speed_ms > 100.0f) { _sentence_valid = false; } break; case 5: // expecting A for data valid if (_term[0] != 'A') { _sentence_valid = false; } break; } return false; } // return the numeric value of an ascii hex character int16_t AP_WindVane_NMEA::char_to_hex(char a) { if (a >= 'A' && a <= 'F') return a - 'A' + 10; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else return a - '0'; }