/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_Backend.h" #if HAL_PROXIMITY_ENABLED #include #include #include #include #include extern const AP_HAL::HAL& hal; /* base class constructor. This incorporates initialisation as well. */ AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : frontend(_frontend), state(_state) { } static_assert(PROXIMITY_MAX_DIRECTION <= 8, "get_horizontal_distances assumes 8-bits is enough for validity bitmask"); // get distances in PROXIMITY_MAX_DIRECTION directions horizontally. used for sending distances to ground station bool AP_Proximity_Backend::get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const { AP_Proximity::Proximity_Distance_Array prx_filt_dist_array; // unused return boundary.get_layer_distances(PROXIMITY_MIDDLE_LAYER, distance_max(), prx_dist_array, prx_filt_dist_array); } // get distances in PROXIMITY_MAX_DIRECTION directions at a layer. used for logging bool AP_Proximity_Backend::get_active_layer_distances(uint8_t layer, AP_Proximity::Proximity_Distance_Array &prx_dist_array, AP_Proximity::Proximity_Distance_Array &prx_filt_dist_array) const { return boundary.get_layer_distances(layer, distance_max(), prx_dist_array, prx_filt_dist_array); } // set status and update valid count void AP_Proximity_Backend::set_status(AP_Proximity::Status status) { state.status = status; } // timeout faces that have not received data recently and update filter frequencies void AP_Proximity_Backend::boundary_3D_checks() { // set the cutoff freq for low pass filter boundary.set_filter_freq(frontend.get_filter_freq()); // check if any face has valid distance when it should not const uint32_t now_ms = AP_HAL::millis(); // run this check every PROXIMITY_BOUNDARY_3D_TIMEOUT_MS if ((now_ms - _last_timeout_check_ms) > PROXIMITY_BOUNDARY_3D_TIMEOUT_MS) { _last_timeout_check_ms = now_ms; boundary.check_face_timeout(); } } // correct an angle (in degrees) based on the orientation and yaw correction parameters float AP_Proximity_Backend::correct_angle_for_orientation(float angle_degrees) const { const float angle_sign = (frontend.get_orientation(state.instance) == 1) ? -1.0f : 1.0f; return wrap_360(angle_degrees * angle_sign + frontend.get_yaw_correction(state.instance)); } // check if a reading should be ignored because it falls into an ignore area (check_for_ign_area should be sent as false if this check is not needed) // pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle) // yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle) // Also checks if obstacle is near land or out of range // angles should be in degrees and in the range of 0 to 360, distance should be in meteres bool AP_Proximity_Backend::ignore_reading(float pitch, float yaw, float distance_m, bool check_for_ign_area) const { // check if distances are supposed to be in a particular range if (!is_zero(frontend._max_m)) { if (distance_m > frontend._max_m) { // too far away return true; } } if (!is_zero(frontend._min_m)) { if (distance_m < frontend._min_m) { // too close return true; } } if (check_for_ign_area) { // check angle vs each ignore area for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (frontend._ignore_width_deg[i] != 0) { if (abs(yaw - frontend._ignore_angle_deg[i]) <= (frontend._ignore_width_deg[i]/2)) { return true; } } } } // check if obstacle is near land return check_obstacle_near_ground(pitch, yaw, distance_m); } // store rangefinder values void AP_Proximity_Backend::set_rangefinder_alt(bool use, bool healthy, float alt_cm) { _last_downward_update_ms = AP_HAL::millis(); _rangefinder_use = use; _rangefinder_healthy = healthy; _rangefinder_alt = alt_cm * 0.01f; } // get alt from rangefinder in meters bool AP_Proximity_Backend::get_rangefinder_alt(float &alt_m) const { if (!_rangefinder_use || !_rangefinder_healthy) { // range finder is not healthy return false; } const uint32_t dt = AP_HAL::millis() - _last_downward_update_ms; if (dt > PROXIMITY_ALT_DETECT_TIMEOUT_MS) { return false; } // readings are healthy alt_m = _rangefinder_alt; return true; } // Check if Obstacle defined by body-frame yaw and pitch is near ground bool AP_Proximity_Backend::check_obstacle_near_ground(float pitch, float yaw, float distance) const { if (!frontend._ign_gnd_enable) { return false; } if (!hal.util->get_soft_armed()) { // don't run this feature while vehicle is disarmed, otherwise proximity data will not show up on GCS return false; } if ((pitch > 90.0f) || (pitch < -90.0f)) { // sanity check on pitch return false; } // Assume object is yaw and pitch bearing and distance meters away from the vehicle Vector3f object_3D; object_3D.offset_bearing(wrap_180(yaw), (pitch * -1.0f), distance); const Matrix3f body_to_ned = AP::ahrs().get_rotation_body_to_ned(); const Vector3f rotated_object_3D = body_to_ned * object_3D; float alt = FLT_MAX; if (!get_rangefinder_alt(alt)) { return false; } if (rotated_object_3D.z > -0.5f) { // obstacle is at the most 0.5 meters above vehicle if ((alt - PROXIMITY_GND_DETECT_THRESHOLD) < rotated_object_3D.z) { // obstacle is near or below ground return true; } } return false; } // returns true if database is ready to be pushed to and all cached data is ready bool AP_Proximity_Backend::database_prepare_for_push(Vector3f ¤t_pos, Matrix3f &body_to_ned) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return false; } if (!AP::ahrs().get_relative_position_NED_origin(current_pos)) { return false; } body_to_ned = AP::ahrs().get_rotation_body_to_ned(); return true; } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(float angle, float distance) { Vector3f current_pos; Matrix3f body_to_ned; if (database_prepare_for_push(current_pos, body_to_ned)) { database_push(angle, distance, AP_HAL::millis(), current_pos, body_to_ned); } } // update Object Avoidance database with Earth-frame point // pitch can be optionally provided if needed void AP_Proximity_Backend::database_push(float angle, float pitch, float distance, uint32_t timestamp_ms, const Vector3f ¤t_pos, const Matrix3f &body_to_ned) { AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return; } if ((pitch > 90.0f) || (pitch < -90.0f)) { // sanity check on pitch return; } //Assume object is angle and pitch bearing and distance meters away from the vehicle Vector3f object_3D; object_3D.offset_bearing(wrap_180(angle), (pitch * -1.0f), distance); const Vector3f rotated_object_3D = body_to_ned * object_3D; //Calculate the position vector from origin Vector3f temp_pos = current_pos + rotated_object_3D; //Convert the vector to a NEU frame from NED temp_pos.z = temp_pos.z * -1.0f; oaDb->queue_push(temp_pos, timestamp_ms, distance); } #endif // HAL_PROXIMITY_ENABLED