/// @file AP_MotorsHeli_Dual.h /// @brief Motor control class for dual heli (tandem or transverse) /// @author Fredrik Hedberg #ifndef __AP_MOTORS_HELI_DUAL_H__ #define __AP_MOTORS_HELI_DUAL_H__ #include <AP_Common/AP_Common.h> #include <AP_Math/AP_Math.h> #include <RC_Channel/RC_Channel.h> #include "AP_MotorsHeli.h" #include "AP_MotorsHeli_RSC.h" // servo position defaults #define AP_MOTORS_HELI_DUAL_SERVO1_POS -60 #define AP_MOTORS_HELI_DUAL_SERVO2_POS 60 #define AP_MOTORS_HELI_DUAL_SERVO3_POS 180 #define AP_MOTORS_HELI_DUAL_SERVO4_POS -60 #define AP_MOTORS_HELI_DUAL_SERVO5_POS 60 #define AP_MOTORS_HELI_DUAL_SERVO6_POS 180 // collective control direction definitions #define AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_NORMAL 0 #define AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_REVERSED 1 // rsc function output channel #define AP_MOTORS_HELI_DUAL_RSC CH_8 // tandem modes #define AP_MOTORS_HELI_DUAL_MODE_TANDEM 0 // tandem mode (rotors front and aft) #define AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE 1 // transverse mode (rotors side by side) // default differential-collective-pitch scaler #define AP_MOTORS_HELI_DUAL_DCP_SCALER 0.25f // maximum number of swashplate servos #define AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS 6 // default collective min, max and midpoints for the rear swashplate #define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN 1250 #define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX 1750 #define AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID 1500 /// @class AP_MotorsHeli_Dual class AP_MotorsHeli_Dual : public AP_MotorsHeli { public: // constructor AP_MotorsHeli_Dual(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_MotorsHeli(loop_rate, speed_hz), _rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_DUAL_RSC) { AP_Param::setup_object_defaults(this, var_info); }; // set_update_rate - set update rate to motors void set_update_rate( uint16_t speed_hz ) override; // output_test - spin a motor at the pwm value specified void output_test(uint8_t motor_seq, int16_t pwm) override; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000 void set_desired_rotor_speed(float desired_speed) override; // get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000 float get_main_rotor_speed() const override { return _rotor.get_rotor_speed(); } // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000 float get_desired_rotor_speed() const override { return _rotor.get_rotor_speed(); } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight bool rotor_speed_above_critical() const override { return _rotor.get_rotor_speed() > _rotor.get_critical_speed(); } // calculate_scalars - recalculates various scalars used void calculate_scalars() override; // calculate_armed_scalars - recalculates scalars that can change while armed void calculate_armed_scalars() override; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) uint16_t get_motor_mask() override; // has_flybar - returns true if we have a mechical flybar bool has_flybar() const override { return AP_MOTORS_HELI_NOFLYBAR; } // supports_yaw_passthrought - returns true if we support yaw passthrough bool supports_yaw_passthrough() const override { return false; } // servo_test - move servos through full range of movement void servo_test() override; // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; protected: // init_outputs bool init_outputs () override; // update_motor_controls - sends commands to motor controllers void update_motor_control(RotorControlState state) override; // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void calculate_roll_pitch_collective_factors () override; // move_actuators - moves swash plate to attitude of parameters passed in void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override; // objects we depend upon AP_MotorsHeli_RSC _rotor; // main rotor controller // internal variables float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function // parameters AP_Int16 _collective2_min; // Lowest possible servo position for the rear swashplate AP_Int16 _collective2_max; // Highest possible servo position for the rear swashplate AP_Int16 _collective2_mid; // Swash servo position corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades) AP_Int16 _servo1_pos; // angular location of swash servo #1 AP_Int16 _servo2_pos; // angular location of swash servo #2 AP_Int16 _servo3_pos; // angular location of swash servo #3 AP_Int16 _servo4_pos; // angular location of swash servo #4 AP_Int16 _servo5_pos; // angular location of swash servo #5 AP_Int16 _servo6_pos; // angular location of swash servo #6 AP_Int8 _collective_direction; // Collective control direction, normal or reversed AP_Int16 _swash1_phase_angle; // phase angle correction for 1st swash. AP_Int16 _swash2_phase_angle; // phase angle correction for 2nd swash. AP_Int8 _dual_mode; // which dual mode the heli is AP_Float _dcp_scaler; // scaling factor applied to the differential-collective-pitch AP_Float _dcp_yaw_effect; // feed-forward compensation to automatically add yaw input when differential collective pitch is applied. AP_Float _yaw_scaler; // scaling factor applied to the yaw mixing SRV_Channel *_swash_servo_1; SRV_Channel *_swash_servo_2; SRV_Channel *_swash_servo_3; SRV_Channel *_swash_servo_4; SRV_Channel *_swash_servo_5; SRV_Channel *_swash_servo_6; // internal variables float _collective2_mid_pct = 0.0f; // collective mid parameter value for rear swashplate converted to 0 ~ 1 range float _rollFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; float _pitchFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; float _collectiveFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; float _yawFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; }; #endif // AP_MotorsHeli_Dual