# hw definition file for processing by chibios_hwdef.py # for bootloader for FMUv4pro hardware (Pixhawk 3 Pro) # MCU class and specific type MCU STM32F4xx STM32F469xx # board ID for firmware load APJ_BOARD_ID 13 # crystal frequency OSCILLATOR_HZ 24000000 # board voltage STM32_VDD 330U # ChibiOS system timer STM32_ST_USE_TIMER 5 # flash size FLASH_SIZE_KB 2048 # location of application code FLASH_BOOTLOADER_LOAD_KB 16 # bootloader loads at start of flash FLASH_RESERVE_START_KB 0 # uarts and USB to run bootloader protocol on UART_ORDER OTG1 USART2 USART3 # this is the pin that senses USB being connected. It is an input pin # setup as OPENDRAIN PA9 VBUS INPUT OPENDRAIN # now we define the pins that USB is connected on PA11 OTG_FS_DM OTG1 PA12 OTG_FS_DP OTG1 # these are the pins for SWD debugging with a STlinkv2 or black-magic probe PA13 JTMS-SWDIO SWD PA14 JTCK-SWCLK SWD # Another USART, this one for telem1 PD5 USART2_TX USART2 PD6 USART2_RX USART2 PD3 USART2_CTS USART2 PD4 USART2_RTS USART2 # the telem2 USART, also with RTS/CTS available # USART3 serial3 telem2 PD8 USART3_TX USART3 PD9 USART3_RX USART3 PD11 USART3_CTS USART3 PD12 USART3_RTS USART3 # define a LED PB1 LED_BOOTLOADER OUTPUT PB11 LED_ACTIVITY OUTPUT define HAL_LED_ON 1 # we need to tell HAL_ChibiOS/Storage.cpp how much storage is # available (in bytes) define HAL_STORAGE_SIZE 16384 # uncomment the lines below to enable strict API # checking in ChibiOS # define CH_DBG_ENABLE_ASSERTS TRUE # define CH_DBG_ENABLE_CHECKS TRUE # define CH_DBG_SYSTEM_STATE_CHECK TRUE # define CH_DBG_ENABLE_STACK_CHECK TRUE