/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include "AP_Proximity.h" #define PROXIMITY_SECTORS_MAX 12 // maximum number of sectors #define PROXIMITY_BOUNDARY_DIST_MIN 0.6f // minimum distance for a boundary point. This ensures the object avoidance code doesn't think we are outside the boundary. #define PROXIMITY_BOUNDARY_DIST_DEFAULT 100 // if we have no data for a sector, boundary is placed 100m out class AP_Proximity_Backend { public: // constructor. This incorporates initialisation as well. AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state); // we declare a virtual destructor so that Proximity drivers can // override with a custom destructor if need be virtual ~AP_Proximity_Backend(void) {} // update the state structure virtual void update() = 0; // get maximum and minimum distances (in meters) of sensor virtual float distance_max() const = 0; virtual float distance_min() const = 0; // get distance upwards in meters. returns true on success virtual bool get_upward_distance(float &distance) const { return false; } // handle mavlink DISTANCE_SENSOR messages virtual void handle_msg(const mavlink_message_t &msg) {} // get distance in meters in a particular direction in degrees (0 is forward, clockwise) // returns true on successful read and places distance in distance bool get_horizontal_distance(float angle_deg, float &distance) const; // get boundary points around vehicle for use by avoidance // returns nullptr and sets num_points to zero if no boundary can be returned const Vector2f* get_boundary_points(uint16_t& num_points) const; // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool get_closest_object(float& angle_deg, float &distance) const; // get number of objects, angle and distance - used for non-GPS avoidance uint8_t get_object_count() const; bool get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const; // get distances in 8 directions. used for sending distances to ground station bool get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const; // copy location points around vehicle into a buffer owned by the caller // caller should provide the buff_size which is the maximum number of locations the buffer can hold (normally PROXIMITY_MAX_DIRECTION) // num_copied is updated with the number of locations copied into the buffer // returns true on success, false on failure which should only happen if buff is nullptr bool copy_locations(AP_Proximity::Proximity_Location* buff, uint16_t buff_size, uint16_t& num_copied); protected: // set status and update valid_count void set_status(AP_Proximity::Proximity_Status status); // find which sector a given angle falls into bool convert_angle_to_sector(float angle_degrees, uint8_t §or) const; // initialise the boundary and sector_edge_vector array used for object avoidance // should be called if the sector_middle_deg or _setor_width_deg arrays are changed void init_boundary(); // update boundary points used for object avoidance based on a single sector's distance changing // the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing // the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle void update_boundary_for_sector(uint8_t sector); // get ignore area info uint8_t get_ignore_area_count() const; bool get_ignore_area(uint8_t index, uint16_t &angle_deg, uint8_t &width_deg) const; bool get_next_ignore_start_or_end(uint8_t start_or_end, int16_t start_angle, int16_t &ignore_start) const; // earth frame objects void update_locations(); AP_Proximity &frontend; AP_Proximity::Proximity_State &state; // reference to this instances state // sectors uint8_t _num_sectors = PROXIMITY_MAX_DIRECTION; uint16_t _sector_middle_deg[PROXIMITY_SECTORS_MAX] = {0, 45, 90, 135, 180, 225, 270, 315, 0, 0, 0, 0}; // middle angle of each sector uint8_t _sector_width_deg[PROXIMITY_SECTORS_MAX] = {45, 45, 45, 45, 45, 45, 45, 45, 0, 0, 0, 0}; // width (in degrees) of each sector // sensor data float _angle[PROXIMITY_SECTORS_MAX]; // angle to closest object within each sector float _distance[PROXIMITY_SECTORS_MAX]; // distance to closest object within each sector bool _distance_valid[PROXIMITY_SECTORS_MAX]; // true if a valid distance received for each sector // fence boundary Vector2f _sector_edge_vector[PROXIMITY_SECTORS_MAX]; // vector for right-edge of each sector, used to speed up calculation of boundary Vector2f _boundary_point[PROXIMITY_SECTORS_MAX]; // bounding polygon around the vehicle calculated conservatively for object avoidance // earth frame locations (i.e. detected obstacles stored as lat/lon points) uint16_t _location_count; // number of locations held in _locations buffer AP_Proximity::Proximity_Location _locations[PROXIMITY_SECTORS_MAX]; // buffer of locations HAL_Semaphore_Recursive _rsem; // semaphore for access to _locations and _location_count };