#include <AP_HAL/AP_HAL.h> #if CONFIG_HAL_BOARD == HAL_BOARD_SITL && defined(HAL_BUILD_AP_PERIPH) #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include <stdio.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> #include <sys/select.h> #include <AP_Param/AP_Param.h> #include <SITL/SIM_JSBSim.h> #include <AP_HAL/utility/Socket.h> #include <AP_HAL/utility/getopt_cpp.h> #include <SITL/SITL.h> extern const AP_HAL::HAL& hal; using namespace HALSITL; enum long_options { CMDLINE_SERIAL0=1, CMDLINE_SERIAL1, CMDLINE_SERIAL2, CMDLINE_SERIAL3, CMDLINE_SERIAL4, CMDLINE_SERIAL5, CMDLINE_SERIAL6, CMDLINE_SERIAL7, CMDLINE_SERIAL8, CMDLINE_SERIAL9, CMDLINE_DEFAULTS, }; void SITL_State::init(int argc, char * const argv[]) { int opt; const struct GetOptLong::option options[] = { {"help", false, 0, 'h'}, {"instance", true, 0, 'I'}, {"maintenance", false, 0, 'M'}, {"serial0", true, 0, CMDLINE_SERIAL0}, {"serial1", true, 0, CMDLINE_SERIAL1}, {"serial2", true, 0, CMDLINE_SERIAL2}, {"serial3", true, 0, CMDLINE_SERIAL3}, {"serial4", true, 0, CMDLINE_SERIAL4}, {"serial5", true, 0, CMDLINE_SERIAL5}, {"serial6", true, 0, CMDLINE_SERIAL6}, {"serial7", true, 0, CMDLINE_SERIAL7}, {"serial8", true, 0, CMDLINE_SERIAL8}, {"serial9", true, 0, CMDLINE_SERIAL9}, {"defaults", true, 0, CMDLINE_DEFAULTS}, {0, false, 0, 0} }; setvbuf(stdout, (char *)0, _IONBF, 0); setvbuf(stderr, (char *)0, _IONBF, 0); GetOptLong gopt(argc, argv, "hI:M", options); while((opt = gopt.getoption()) != -1) { switch (opt) { case 'I': _instance = atoi(gopt.optarg); break; case 'M': printf("Running in Maintenance Mode\n"); _maintenance = true; break; case CMDLINE_SERIAL0: case CMDLINE_SERIAL1: case CMDLINE_SERIAL2: case CMDLINE_SERIAL3: case CMDLINE_SERIAL4: case CMDLINE_SERIAL5: case CMDLINE_SERIAL6: case CMDLINE_SERIAL7: case CMDLINE_SERIAL8: case CMDLINE_SERIAL9: { static const uint8_t mapping[] = { 0, 2, 3, 1, 4, 5, 6, 7, 8, 9 }; _uart_path[mapping[opt - CMDLINE_SERIAL0]] = gopt.optarg; break; } case CMDLINE_DEFAULTS: defaults_path = strdup(gopt.optarg); break; default: printf("Options:\n" "\t--help|-h display this help information\n" "\t--instance|-I N set instance of SITL Periph\n" "\t--maintenance|-M run in maintenance mode\n" "\t--defaults path set param defaults file\n" "\t--serial0 device set device string for SERIAL0\n" "\t--serial1 device set device string for SERIAL1\n" "\t--serial2 device set device string for SERIAL2\n" "\t--serial3 device set device string for SERIAL3\n" "\t--serial4 device set device string for SERIAL4\n" "\t--serial5 device set device string for SERIAL5\n" "\t--serial6 device set device string for SERIAL6\n" "\t--serial7 device set device string for SERIAL7\n" "\t--serial8 device set device string for SERIAL8\n" "\t--serial9 device set device string for SERIAL9\n" ); exit(1); } } printf("Running Instance: %d\n", _instance); sitl_model = new SimMCast(""); _sitl = AP::sitl(); _sitl->i2c_sim.init(); sitl_model->set_i2c(&_sitl->i2c_sim); } void SITL_State::wait_clock(uint64_t wait_time_usec) { while (AP_HAL::micros64() < wait_time_usec) { struct sitl_input input {}; sitl_model->update(input); sim_update(); update_voltage_current(input, 0); usleep(100); } } /* open multicast input from main simulator */ void SimMCast::multicast_open(void) { struct sockaddr_in sockaddr {}; int ret; #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(SITL_MCAST_PORT); sockaddr.sin_family = AF_INET; sockaddr.sin_addr.s_addr = inet_addr(SITL_MCAST_IP); mc_fd = socket(AF_INET, SOCK_DGRAM, 0); if (mc_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } ret = fcntl(mc_fd, F_SETFD, FD_CLOEXEC); if (ret == -1) { fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno)); exit(1); } int one = 1; if (setsockopt(mc_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) { fprintf(stderr, "setsockopt failed: %s\n", strerror(errno)); exit(1); } #if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD) /* on cygwin you need to bind to INADDR_ANY then use the multicast IP_ADD_MEMBERSHIP to get on the right address */ sockaddr.sin_addr.s_addr = htonl(INADDR_ANY); #endif ret = bind(mc_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "multicast bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } struct ip_mreq mreq {}; mreq.imr_multiaddr.s_addr = inet_addr(SITL_MCAST_IP); mreq.imr_interface.s_addr = htonl(INADDR_ANY); ret = setsockopt(mc_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); if (ret == -1) { fprintf(stderr, "multicast membership add failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } ::printf("multicast receiver initialised\n"); } /* open UDP socket back to master for servo output */ void SimMCast::servo_fd_open(void) { servo_fd = socket(AF_INET, SOCK_DGRAM, 0); if (servo_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } int ret = fcntl(servo_fd, F_SETFD, FD_CLOEXEC); if (ret == -1) { fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno)); exit(1); } int one = 1; if (setsockopt(servo_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) { fprintf(stderr, "setsockopt failed: %s\n", strerror(errno)); exit(1); } in_addr.sin_port = htons(SITL_SERVO_PORT); ret = connect(servo_fd, (struct sockaddr *)&in_addr, sizeof(in_addr)); if (ret == -1) { fprintf(stderr, "multicast servo connect failed\n"); exit(1); } } /* send servo outputs back to master */ void SimMCast::servo_send(void) { const auto *_sitl = AP::sitl(); if (_sitl == nullptr) { return; } uint16_t out[SITL_NUM_CHANNELS] {}; hal.rcout->read(out, SITL_NUM_CHANNELS); float out_float[SITL_NUM_CHANNELS]; const uint32_t mask = uint32_t(_sitl->can_servo_mask.get()); for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) { out_float[i] = (mask & (1U<<i)) ? out[i] : nanf(""); } send(servo_fd, (void*)out_float, sizeof(out_float), 0); } /* read state from multicast */ void SimMCast::multicast_read(void) { auto *_sitl = AP::sitl(); if (_sitl == nullptr) { return; } if (_sitl->state.timestamp_us == 0) { printf("Waiting for multicast state\n"); } struct SITL::sitl_fdm state; socklen_t len = sizeof(in_addr); while (recvfrom(mc_fd, (void*)&state, sizeof(state), MSG_WAITALL, (sockaddr *)&in_addr, &len) != sizeof(state)) { // nop } if (_sitl->state.timestamp_us == 0) { printf("Got multicast state input\n"); } if (state.timestamp_us < _sitl->state.timestamp_us) { printf("multicast state time reset\n"); // main process has rebooted base_time_us += (_sitl->state.timestamp_us - state.timestamp_us); } _sitl->state = state; location.lat = state.latitude*1.0e7; location.lng = state.longitude*1.0e7; location.alt = state.altitude*1.0e2; if (home.is_zero()) { home = location; } hal.scheduler->stop_clock(_sitl->state.timestamp_us + base_time_us); HALSITL::Scheduler::timer_event(); if (servo_fd == -1) { servo_fd_open(); } else { servo_send(); } } SimMCast::SimMCast(const char *frame_str) : Aircraft(frame_str) { multicast_open(); } void SimMCast::update(const struct sitl_input &input) { multicast_read(); update_home(); update_external_payload(input); auto *_sitl = AP::sitl(); if (_sitl != nullptr) { battery_voltage = _sitl->batt_voltage; } } #endif //CONFIG_HAL_BOARD == HAL_BOARD_SITL && defined(HAL_BUILD_AP_PERIPH)