#include "DCM.h" // XXX HACKS APM_ADC adc; // XXX END HACKS #define GRAVITY 418 //this equivalent to 1G in the raw data coming from the accelerometer #define ADC_CONSTRAINT 900 #define Kp_ROLLPITCH 0.0014 //0.015 // Pitch&Roll Proportional Gain #define Ki_ROLLPITCH 0.0000003 // 0.00001 Pitch&Roll Integrator Gain #define Kp_YAW 1.2 // 1.2 Yaw Porportional Gain #define Ki_YAW 0.00005 // 0.00005 Yaw Integrator Gain // Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ const uint8_t AP_DCM::_sensors[6] = {1,2,0,4,5,6}; // For ArduPilot Mega Sensor Shield Hardware const int AP_DCM::_sensor_signs[] = {1,-1,-1,-1,1,1,-1,-1,-1}; //{-1,1,-1,1,-1,1,-1,-1,-1} !!!! These are probably not right // Temp compensation curve constants // These must be produced by measuring data and curve fitting // [X/Y/Z gyro][A/B/C or 0 order/1st order/2nd order constants] const float AP_DCM::_gyro_temp_curve[3][3] = { {1665,0,0}, {1665,0,0}, {1665,0,0} }; // values may migrate to a Config file // Constructors //////////////////////////////////////////////////////////////// AP_DCM::AP_DCM(APM_Compass *withCompass) : _compass(withCompass), _dcm_matrix(1, 0, 0, 0, 1, 0, 0, 0, 1), _G_Dt(0.02), _course_over_ground_x(0), _course_over_ground_y(1) { } void AP_DCM::update_DCM(void) { read_adc_raw(); // Get current values for IMU sensors matrix_update(); // Integrate the DCM matrix normalize(); // Normalize the DCM matrix drift_correction(); // Perform drift correction euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation } // Read the 6 ADC channels needed for the IMU // ------------------------------------------ void AP_DCM::read_adc_raw(void) { int tc_temp = adc.Ch(_gyro_temp_ch); for (int i = 0; i < 6; i++) { _adc_in[i] = adc.Ch(_sensors[i]); if (i < 3) { // XXX magic numbers! _adc_in[i] -= _gyro_temp_comp(i, tc_temp); // Subtract temp compensated typical gyro bias } else { _adc_in[i] -= 2025; // Subtract typical accel bias } } } // Returns the temperature compensated raw gyro value //--------------------------------------------------- float AP_DCM::_gyro_temp_comp(int i, int temp) const { // We use a 2nd order curve of the form Gtc = A + B * Graw + C * (Graw)**2 //------------------------------------------------------------------------ return _gyro_temp_curve[i][0] + _gyro_temp_curve[i][1] * temp + _gyro_temp_curve[i][2] * temp * temp; } // Returns an analog value with the offset removed // ----------------- float AP_DCM::read_adc(int select) { float temp; if (_sensor_signs[select] < 0) temp = (_adc_offset[select] - _adc_in[select]); else temp = (_adc_in[select] - _adc_offset[select]); if (abs(temp) > ADC_CONSTRAINT) adc_constraints++; // We keep track of the number of times we constrain the ADC output for performance reporting /* // For checking the pitch/roll drift correction gain time constants switch (select) { case 3: return 0; break; case 4: return 0; break; case 5: return 400; break; } */ //End of drift correction gain test code return constrain(temp, -ADC_CONSTRAINT, ADC_CONSTRAINT); // Throw out nonsensical values } /**************************************************/ void AP_DCM::normalize(void) { float error = 0; DCM_Vector temporary[3]; uint8_t problem = 0; error = -_dcm_matrix(0).dot_product(_dcm_matrix(1)) * 0.5; // eq.19 temporary[0] = _dcm_matrix(1) * error + _dcm_matrix(0); // eq.19 temporary[1] = _dcm_matrix(0) * error + _dcm_matrix(1); // eq.19 temporary[2] = temporary[0] ^ temporary[1]; // c= a x b // eq.20 _dcm_matrix(0) = _renorm(temporary[0], problem); _dcm_matrix(1) = _renorm(temporary[1], problem); _dcm_matrix(2) = _renorm(temporary[2], problem); if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down! _dcm_matrix(0, 0)= 1.0f; _dcm_matrix(0, 1)= 0.0f; _dcm_matrix(0, 2)= 0.0f; _dcm_matrix(1, 0)= 0.0f; _dcm_matrix(1, 1)= 1.0f; _dcm_matrix(1, 2)= 0.0f; _dcm_matrix(2, 0)= 0.0f; _dcm_matrix(2, 1)= 0.0f; _dcm_matrix(2, 2)= 1.0f; } } DCM_Vector AP_DCM::_renorm(DCM_Vector const &a, uint8_t &problem) { float renorm; renorm = a.dot_product(a); if (renorm < 1.5625f && renorm > 0.64f) { // Check if we are OK with Taylor expansion renorm = 0.5 * (3 - renorm); // eq.21 } else if (renorm < 100.0f && renorm > 0.01f) { renorm = 1.0 / sqrt(renorm); renorm_sqrt_count++; } else { problem = 1; renorm_blowup_count++; } return(a * renorm); } /**************************************************/ void AP_DCM::drift_correction(void) { //Compensation the Roll, Pitch and Yaw drift. float mag_heading_x; float mag_heading_y; float error_course = 0; static float scaled_omega_P[3]; static float scaled_omega_I[3]; float accel_magnitude; float accel_weight; float integrator_magnitude; //*****Roll and Pitch*************** // Calculate the magnitude of the accelerometer vector accel_magnitude = _accel_vector.magnitude() / GRAVITY; // Scale to gravity. // Dynamic weighting of accelerometer info (reliability filter) // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) accel_weight = constrain(1 - 2 * abs(1 - accel_magnitude), 0, 1); // // We monitor the amount that the accelerometer based drift correction is deweighted for performanc reporting imu_health = imu_health + 0.02 * (accel_weight-.5); imu_health = constrain(imu_health, 0, 1); // adjust the ground of reference _error_roll_pitch = _accel_vector ^ _dcm_matrix(2); // error_roll_pitch are in Accel ADC units // Limit max error_roll_pitch to limit max omega_P and omega_I _error_roll_pitch(0) = constrain(_error_roll_pitch(0), -50, 50); _error_roll_pitch(1) = constrain(_error_roll_pitch(1), -50, 50); _error_roll_pitch(2) = constrain(_error_roll_pitch(2), -50, 50); _omega_P = _error_roll_pitch * (Kp_ROLLPITCH * accel_weight); _omega_I += _error_roll_pitch * (Ki_ROLLPITCH * accel_weight); //*****YAW*************** if (_compass) { // We make the gyro YAW drift correction based on compass magnetic heading error_course= (_dcm_matrix(0, 0) * _compass->Heading_Y) - (_dcm_matrix(1, 0) * _compass->Heading_X); // Calculating YAW error } else { // Use GPS Ground course to correct yaw gyro drift if (ground_speed >= SPEEDFILT) { // Optimization: We have precalculated course_over_ground_x and course_over_ground_y (Course over Ground X and Y) from GPS info error_course = (_dcm_matrix(0, 0) * _course_over_ground_y) - (_dcm_matrix(1, 0) * _course_over_ground_x); // Calculating YAW error } } _error_yaw = _dcm_matrix(2) * error_course; // Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position. _omega_P += _error_yaw * Kp_YAW; // Adding Proportional. _omega_I += _error_yaw * Ki_YAW; // adding integrator to the omega_I // Here we will place a limit on the integrator so that the integrator cannot ever exceed half the saturation limit of the gyros integrator_magnitude = sqrt(_omega_I.dot_product(_omega_I)); if (integrator_magnitude > radians(300)) { _omega_I *= (0.5f * radians(300) / integrator_magnitude); } } /**************************************************/ void AP_DCM::_accel_adjust(void) { _accel_vector(1) += accel_scale((ground_speed / 100) * _omega(2)); // Centrifugal force on Acc_y = GPS_speed * GyroZ _accel_vector(2) -= accel_scale((ground_speed / 100) * _omega(1)); // Centrifugal force on Acc_z = GPS_speed * GyroY } /**************************************************/ void AP_DCM::matrix_update(void) { DCM_Matrix update_matrix; _gyro_vector(0) = gyro_scaled_X(read_adc(0)); // gyro x roll _gyro_vector(1) = gyro_scaled_Y(read_adc(1)); // gyro y pitch _gyro_vector(2) = gyro_scaled_Z(read_adc(2)); // gyro Z yaw //Record when you saturate any of the gyros. if((abs(_gyro_vector(0)) >= radians(300)) || (abs(_gyro_vector(1)) >= radians(300)) || (abs(_gyro_vector(2)) >= radians(300))) gyro_sat_count++; /* Serial.print (__adc_in[0]); Serial.print (" "); Serial.print (_adc_offset[0]); Serial.print (" "); Serial.print (_gyro_vector(0)); Serial.print (" "); Serial.print (__adc_in[1]); Serial.print (" "); Serial.print (_adc_offset[1]); Serial.print (" "); Serial.print (_gyro_vector(1)); Serial.print (" "); Serial.print (__adc_in[2]); Serial.print (" "); Serial.print (_adc_offset[2]); Serial.print (" "); Serial.println (_gyro_vector(2)); */ // _accel_vector(0) = read_adc(3); // acc x // _accel_vector(1) = read_adc(4); // acc y // _accel_vector(2) = read_adc(5); // acc z // Low pass filter on accelerometer data (to filter vibrations) _accel_vector(0) = _accel_vector(0) * 0.6 + (float)read_adc(3) * 0.4; // acc x _accel_vector(1) = _accel_vector(1) * 0.6 + (float)read_adc(4) * 0.4; // acc y _accel_vector(2) = _accel_vector(2) * 0.6 + (float)read_adc(5) * 0.4; // acc z _omega = _gyro_vector + _omega_I; // adding proportional term _omega_vector = _omega + _omega_P; // adding Integrator term _accel_adjust(); // Remove centrifugal acceleration. #if OUTPUTMODE == 1 update_matrix(0, 0) = 0; update_matrix(0, 1) = -_G_Dt * _omega_vector(2); // -z update_matrix(0, 2) = _G_Dt * _omega_vector(1); // y update_matrix(1, 0) = _G_Dt * _omega_vector(2); // z update_matrix(1, 1) = 0; update_matrix(1, 2) = -_G_Dt * _omega_vector(0); // -x update_matrix(2, 0) = -_G_Dt * _omega_vector(1); // -y update_matrix(2, 1) = _G_Dt * _omega_vector(0); // x update_matrix(2, 2) = 0; #else // Uncorrected data (no drift correction) update_matrix(0, 0) = 0; update_matrix(0, 1) = -_G_Dt * _gyro_vector(2); // -z update_matrix(0, 2) = _G_Dt * _gyro_vector(1); // y update_matrix(1, 0) = _G_Dt * _gyro_vector(2); // z update_matrix(1, 1) = 0; update_matrix(1, 2) = -_G_Dt * _gyro_vector(0); update_matrix(2, 0) = -_G_Dt * _gyro_vector(1); update_matrix(2, 1) = _G_Dt * _gyro_vector(0); update_matrix(2, 2) = 0; #endif // update _dcm_matrix += _dcm_matrix * update_matrix; /* Serial.print (_G_Dt * 1000); Serial.print (" "); Serial.print (dcm_matrix(0, 0)); Serial.print (" "); Serial.print (dcm_matrix(0, 1)); Serial.print (" "); Serial.print (dcm_matrix(0, 2)); Serial.print (" "); Serial.print (dcm_matrix(1, 0)); Serial.print (" "); Serial.print (dcm_matrix(1, 1)); Serial.print (" "); Serial.print (dcm_matrix(1, 2)); Serial.print (" "); Serial.print (dcm_matrix(2, 0)); Serial.print (" "); Serial.print (dcm_matrix(2, 1)); Serial.print (" "); Serial.println (dcm_matrix(2, 2)); */ } /**************************************************/ void AP_DCM::euler_angles(void) { #if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes) roll = atan2(_accel_vector(1), _accel_vector(2)); // atan2(acc_y, acc_z) roll_sensor = degrees(roll) * 100; pitch = -asin((_accel_vector(0)) / (double)GRAVITY); // asin(acc_x) pitch_sensor = degrees(pitch) * 100; yaw = 0; #else pitch = -asin(_dcm_matrix(2, 0)); pitch_sensor = degrees(pitch) * 100; roll = atan2(_dcm_matrix(2, 1), _dcm_matrix(2, 2)); roll_sensor = degrees(roll) * 100; yaw = atan2(_dcm_matrix(1, 0), _dcm_matrix(0, 0)); yaw_sensor = degrees(yaw) * 100; #endif /* Serial.print ("Roll "); Serial.print (roll_sensor / 100); Serial.print (", Pitch "); Serial.print (pitch_sensor / 100); Serial.print (", Yaw "); Serial.println (yaw_sensor / 100); */ } /**************************************************/ //Computes the dot product of two vectors float DCM_Vector::dot_product(DCM_Vector const &vector2) const { float op = 0; for(int c = 0; c < 3; c++) op += _v[c] * vector2(c); return op; } // cross-product DCM_Vector DCM_Vector::operator^(DCM_Vector const &a) const { DCM_Vector result; result(0) = (_v[1] * a(2)) - (_v[2] * a(1)); result(1) = (_v[2] * a(0)) - (_v[0] * a(2)); result(2) = (_v[0] * a(1)) - (_v[1] * a(0)); return(result); } // scale DCM_Vector DCM_Vector::operator*(float scale) const { DCM_Vector result; result(0) = _v[0] * scale; result(1) = _v[1] * scale; result(2) = _v[2] * scale; return(result); } // scale void DCM_Vector::operator*=(float scale) { _v[0] *= scale; _v[1] *= scale; _v[2] *= scale; } // add DCM_Vector DCM_Vector::operator+(DCM_Vector const &a) const { DCM_Vector result; result(0) = _v[0] + a(0); result(1) = _v[1] + a(1); result(2) = _v[2] + a(2); return(result); } // add void DCM_Vector::operator+=(DCM_Vector const &a) { _v[0] += a(0); _v[1] += a(1); _v[2] += a(2); } // magnitude float DCM_Vector::magnitude(void) const { return(sqrt((_v[0] * _v[0]) + (_v[1] * _v[1]) + (_v[2] * _v[2]))); } // 3x3 matrix multiply DCM_Matrix DCM_Matrix::operator*(DCM_Matrix const &a) const { DCM_Matrix result; for (int x = 0; x < 3; x++) { for (int y = 0; y < 3; y++) { result(x, y) = _m[x](0) * a(0, y) + _m[x](1) * a(1, y) + _m[x](2) * a(2, y); } } return(result); } // 3x3 matrix add void DCM_Matrix::operator+=(DCM_Matrix const &a) { for (int x = 0; x < 3; x++) for (int y = 0; y < 3; y++) _m[x](y) += a(x,y); }