// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // // Interrupt-driven serial transmit/receive library. // // Copyright (c) 2010 Michael Smith. All rights reserved. // // Receive and baudrate calculations derived from the Arduino // HardwareSerial driver: // // Copyright (c) 2006 Nicholas Zambetti. All right reserved. // // Transmit algorithm inspired by work: // // Code Jose Julio and Jordi Munoz. DIYDrones.com // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // //#include "../AP_Common/AP_Common.h" #include "FastSerial.h" #include "WProgram.h" #include <unistd.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <sys/ioctl.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netinet/tcp.h> #include "desktop.h" #include "util.h" #define LISTEN_BASE_PORT 5760 #define BUFFER_SIZE 128 #if defined(UDR3) # define FS_MAX_PORTS 4 #elif defined(UDR2) # define FS_MAX_PORTS 3 #elif defined(UDR1) # define FS_MAX_PORTS 2 #else # define FS_MAX_PORTS 1 #endif #ifndef MSG_NOSIGNAL # define MSG_NOSIGNAL 0 #endif static struct tcp_state { bool connected; // true if a client has connected int listen_fd; // socket we are listening on int fd; // data socket int serial_port; bool console; } tcp_state[FS_MAX_PORTS]; /* start a TCP connection for a given serial port. If wait_for_connection is true then block until a client connects */ static void tcp_start_connection(unsigned int serial_port, bool wait_for_connection) { struct tcp_state *s = &tcp_state[serial_port]; int one=1; struct sockaddr_in sockaddr; int ret; if (desktop_state.console_mode) { // hack for console access s->connected = true; s->listen_fd = -1; s->fd = 1; s->serial_port = serial_port; s->console = true; set_nonblocking(0); return; } s->serial_port = serial_port; memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(LISTEN_BASE_PORT+serial_port); sockaddr.sin_family = AF_INET; s->listen_fd = socket(AF_INET, SOCK_STREAM, 0); if (s->listen_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ setsockopt(s->listen_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); ret = bind(s->listen_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } ret = listen(s->listen_fd, 5); if (ret == -1) { fprintf(stderr, "listen failed - %s\n", strerror(errno)); exit(1); } printf("Serial port %u on TCP port %u\n", serial_port, LISTEN_BASE_PORT+serial_port); fflush(stdout); if (wait_for_connection) { printf("Waiting for connection ....\n"); s->fd = accept(s->listen_fd, NULL, NULL); if (s->fd == -1) { fprintf(stderr, "accept() error - %s", strerror(errno)); exit(1); } setsockopt(s->fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); setsockopt(s->fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); s->connected = true; if (!desktop_state.slider) { set_nonblocking(s->fd); } } } /* use select() to see if something is pending */ static bool select_check(int fd) { fd_set fds; struct timeval tv; FD_ZERO(&fds); FD_SET(fd, &fds); // zero time means immediate return from select() tv.tv_sec = 0; tv.tv_usec = 0; if (select(fd+1, &fds, NULL, NULL, &tv) == 1) { return true; } return false; } /* see if a new connection is coming in */ static void check_connection(struct tcp_state *s) { if (s->connected) { // we only want 1 connection at a time return; } if (select_check(s->listen_fd)) { s->fd = accept(s->listen_fd, NULL, NULL); if (s->fd != -1) { int one = 1; s->connected = true; setsockopt(s->fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); setsockopt(s->fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); printf("New connection on serial port %u\n", s->serial_port); if (!desktop_state.slider) { set_nonblocking(s->fd); } } } } FastSerial::Buffer __FastSerial__rxBuffer[FS_MAX_PORTS]; FastSerial::Buffer __FastSerial__txBuffer[FS_MAX_PORTS]; // Constructor ///////////////////////////////////////////////////////////////// FastSerial::FastSerial(const uint8_t portNumber, volatile uint8_t *ubrrh, volatile uint8_t *ubrrl, volatile uint8_t *ucsra, volatile uint8_t *ucsrb, const uint8_t u2x, const uint8_t portEnableBits, const uint8_t portTxBits) : _ubrrh(ubrrh), _ubrrl(ubrrl), _ucsra(ucsra), _ucsrb(ucsrb), _u2x(portNumber), _portEnableBits(portEnableBits), _portTxBits(portTxBits), _rxBuffer(&__FastSerial__rxBuffer[portNumber]), _txBuffer(&__FastSerial__txBuffer[portNumber]) { } // Public Methods ////////////////////////////////////////////////////////////// void FastSerial::begin(long baud) { switch (_u2x) { case 0: tcp_start_connection(_u2x, true); break; case 1: /* gps */ tcp_state[1].connected = true; tcp_state[1].fd = sitl_gps_pipe(); tcp_state[1].serial_port = 1; break; default: tcp_start_connection(_u2x, false); break; } } void FastSerial::begin(long baud, unsigned int rxSpace, unsigned int txSpace) { begin(baud); } void FastSerial::end() { } int FastSerial::available(void) { struct tcp_state *s = &tcp_state[_u2x]; check_connection(s); if (!s->connected) { return 0; } if (select_check(s->fd)) { #ifdef FIONREAD // use FIONREAD to get exact value if possible int num_ready; if (ioctl(s->fd, FIONREAD, &num_ready) == 0) { if (num_ready > BUFFER_SIZE) { return BUFFER_SIZE; } if (num_ready == 0) { // EOF is reached fprintf(stdout, "Closed connection on serial port %u\n", s->serial_port); close(s->fd); s->connected = false; return 0; } return num_ready; } #endif return 1; // best we can do is say 1 byte available } return 0; } int FastSerial::txspace(void) { // always claim there is space available return BUFFER_SIZE; } int FastSerial::read(void) { struct tcp_state *s = &tcp_state[_u2x]; char c; if (available() <= 0) { return -1; } if (s->serial_port == 1) { if (sitl_gps_read(s->fd, &c, 1) == 1) { return (uint8_t)c; } return -1; } if (s->console) { return ::read(0, &c, 1); } int n = recv(s->fd, &c, 1, MSG_DONTWAIT | MSG_NOSIGNAL); if (n <= 0) { // the socket has reached EOF close(s->fd); s->connected = false; fprintf(stdout, "Closed connection on serial port %u\n", s->serial_port); fflush(stdout); return -1; } if (n == 1) { return (uint8_t)c; } return -1; } int FastSerial::peek(void) { return -1; } void FastSerial::flush(void) { } void FastSerial::write(uint8_t c) { struct tcp_state *s = &tcp_state[_u2x]; int flags = MSG_NOSIGNAL; check_connection(s); if (!s->connected) { return; } if (!desktop_state.slider) { flags |= MSG_DONTWAIT; } if (s->console) { ::write(s->fd, &c, 1); } else { send(s->fd, &c, 1, flags); } } // Buffer management /////////////////////////////////////////////////////////// bool FastSerial::_allocBuffer(Buffer *buffer, unsigned int size) { return false; } void FastSerial::_freeBuffer(Buffer *buffer) { } /* return true if any bytes are pending */ void desktop_serial_select_setup(fd_set *fds, int *fd_high) { int i; for (i=0; i<FS_MAX_PORTS; i++) { if (tcp_state[i].connected) { FD_SET(tcp_state[i].fd, fds); if (tcp_state[i].fd > *fd_high) { *fd_high = tcp_state[i].fd; } } } }