#include <AP_HAL/AP_HAL.h> #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include "AP_InertialSensor_PX4.h" const extern AP_HAL::HAL& hal; #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <drivers/drv_accel.h> #include <drivers/drv_gyro.h> #include <drivers/drv_hrt.h> #include <stdio.h> AP_InertialSensor_PX4::AP_InertialSensor_PX4(AP_InertialSensor &imu) : AP_InertialSensor_Backend(imu) { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_PX4::detect(AP_InertialSensor &_imu) { AP_InertialSensor_PX4 *sensor = new AP_InertialSensor_PX4(_imu); if (sensor == nullptr) { return nullptr; } if (!sensor->_init_sensor()) { delete sensor; return nullptr; } return sensor; } /* calculate the right queue depth for a device with the given sensor sample rate */ uint8_t AP_InertialSensor_PX4::_queue_depth(uint16_t sensor_sample_rate) const { uint16_t requested_sample_rate = get_sample_rate_hz(); uint8_t min_depth = (sensor_sample_rate+requested_sample_rate-1)/requested_sample_rate; // add 5ms more worth of queue to account for possible timing jitter uint8_t ret = min_depth + (5 * sensor_sample_rate) / 1000; return ret; } bool AP_InertialSensor_PX4::_init_sensor(void) { // assumes max 3 instances _accel_fd[0] = open(ACCEL_BASE_DEVICE_PATH "0", O_RDONLY); _accel_fd[1] = open(ACCEL_BASE_DEVICE_PATH "1", O_RDONLY); _accel_fd[2] = open(ACCEL_BASE_DEVICE_PATH "2", O_RDONLY); _gyro_fd[0] = open(GYRO_BASE_DEVICE_PATH "0", O_RDONLY); _gyro_fd[1] = open(GYRO_BASE_DEVICE_PATH "1", O_RDONLY); _gyro_fd[2] = open(GYRO_BASE_DEVICE_PATH "2", O_RDONLY); _num_accel_instances = 0; _num_gyro_instances = 0; for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { if (_accel_fd[i] >= 0) { _num_accel_instances = i+1; } if (_gyro_fd[i] >= 0) { _num_gyro_instances = i+1; } } if (_num_accel_instances == 0) { return false; } if (_num_gyro_instances == 0) { return false; } for (uint8_t i=0; i<_num_gyro_instances; i++) { int fd = _gyro_fd[i]; int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16; // software LPF off ioctl(fd, GYROIOCSLOWPASS, 0); // 2000dps range ioctl(fd, GYROIOCSRANGE, 2000); switch(devid) { case DRV_GYR_DEVTYPE_MPU6000: case DRV_GYR_DEVTYPE_MPU9250: // hardware LPF off ioctl(fd, GYROIOCSHWLOWPASS, 256); // khz sampling ioctl(fd, GYROIOCSSAMPLERATE, 1000); // set queue depth ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000)); break; case DRV_GYR_DEVTYPE_L3GD20: // hardware LPF as high as possible ioctl(fd, GYROIOCSHWLOWPASS, 100); // ~khz sampling ioctl(fd, GYROIOCSSAMPLERATE, 800); // 10ms queue depth ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(800)); break; default: break; } // calculate gyro sample time int samplerate = ioctl(fd, GYROIOCGSAMPLERATE, 0); if (samplerate < 100 || samplerate > 10000) { AP_HAL::panic("Invalid gyro sample rate"); } _gyro_instance[i] = _imu.register_gyro(samplerate, ioctl(fd, DEVIOCGDEVICEID, 0)); _gyro_sample_time[i] = 1.0f / samplerate; } for (uint8_t i=0; i<_num_accel_instances; i++) { int fd = _accel_fd[i]; int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16; // software LPF off ioctl(fd, ACCELIOCSLOWPASS, 0); // 16g range ioctl(fd, ACCELIOCSRANGE, 16); switch(devid) { case DRV_ACC_DEVTYPE_MPU6000: case DRV_ACC_DEVTYPE_MPU9250: // hardware LPF off ioctl(fd, ACCELIOCSHWLOWPASS, 256); // khz sampling ioctl(fd, ACCELIOCSSAMPLERATE, 1000); // 10ms queue depth ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000)); break; case DRV_ACC_DEVTYPE_LSM303D: // hardware LPF to ~1/10th sample rate for antialiasing ioctl(fd, ACCELIOCSHWLOWPASS, 194); // ~khz sampling ioctl(fd, ACCELIOCSSAMPLERATE, 1600); ioctl(fd,SENSORIOCSPOLLRATE, 1600); // 10ms queue depth ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1600)); break; default: break; } // calculate accel sample time int samplerate = ioctl(fd, ACCELIOCGSAMPLERATE, 0); if (samplerate < 100 || samplerate > 10000) { AP_HAL::panic("Invalid accel sample rate"); } _accel_instance[i] = _imu.register_accel(samplerate, ioctl(fd, DEVIOCGDEVICEID, 0)); _accel_sample_time[i] = 1.0f / samplerate; } return true; } bool AP_InertialSensor_PX4::update(void) { // get the latest sample from the sensor drivers _get_sample(); for (uint8_t k=0; k<_num_accel_instances; k++) { update_accel(_accel_instance[k]); } for (uint8_t k=0; k<_num_gyro_instances; k++) { update_gyro(_gyro_instance[k]); } return true; } void AP_InertialSensor_PX4::_new_accel_sample(uint8_t i, accel_report &accel_report) { Vector3f accel = Vector3f(accel_report.x, accel_report.y, accel_report.z); uint8_t frontend_instance = _accel_instance[i]; // apply corrections _rotate_and_correct_accel(frontend_instance, accel); _notify_new_accel_raw_sample(frontend_instance, accel, accel_report.timestamp); // save last timestamp _last_accel_timestamp[i] = accel_report.timestamp; // report error count _set_accel_error_count(frontend_instance, accel_report.error_count); // publish a temperature (for logging purposed only) _publish_temperature(frontend_instance, accel_report.temperature); #ifdef AP_INERTIALSENSOR_PX4_DEBUG // get time since last sample float dt = _accel_sample_time[i]; _accel_dt_max[i] = MAX(_accel_dt_max[i],dt); _accel_meas_count[i] ++; if(_accel_meas_count[i] >= 10000) { uint32_t tnow = AP_HAL::micros(); ::printf("a%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_accel_meas_count_start_us[i])*1.0e-6f),_accel_dt_max[i]); _accel_meas_count_start_us[i] = tnow; _accel_meas_count[i] = 0; _accel_dt_max[i] = 0; } #endif // AP_INERTIALSENSOR_PX4_DEBUG } void AP_InertialSensor_PX4::_new_gyro_sample(uint8_t i, gyro_report &gyro_report) { Vector3f gyro = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); uint8_t frontend_instance = _gyro_instance[i]; // apply corrections _rotate_and_correct_gyro(frontend_instance, gyro); _notify_new_gyro_raw_sample(frontend_instance, gyro, gyro_report.timestamp); // save last timestamp _last_gyro_timestamp[i] = gyro_report.timestamp; // report error count _set_gyro_error_count(_gyro_instance[i], gyro_report.error_count); #ifdef AP_INERTIALSENSOR_PX4_DEBUG // get time since last sample float dt = _gyro_sample_time[i]; _gyro_dt_max[i] = MAX(_gyro_dt_max[i],dt); _gyro_meas_count[i] ++; if(_gyro_meas_count[i] >= 10000) { uint32_t tnow = AP_HAL::micros(); ::printf("g%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_gyro_meas_count_start_us[i])*1.0e-6f), _gyro_dt_max[i]); _gyro_meas_count_start_us[i] = tnow; _gyro_meas_count[i] = 0; _gyro_dt_max[i] = 0; } #endif // AP_INERTIALSENSOR_PX4_DEBUG } void AP_InertialSensor_PX4::_get_sample() { for (uint8_t i=0; i<MAX(_num_accel_instances,_num_gyro_instances);i++) { struct accel_report accel_report; struct gyro_report gyro_report; bool gyro_valid = _get_gyro_sample(i,gyro_report); bool accel_valid = _get_accel_sample(i,accel_report); while(gyro_valid || accel_valid) { // interleave accel and gyro samples by time - this will allow sculling corrections later // check the next gyro measurement to see if it needs to be integrated first if(gyro_valid && accel_valid && gyro_report.timestamp <= accel_report.timestamp) { _new_gyro_sample(i,gyro_report); gyro_valid = _get_gyro_sample(i,gyro_report); continue; } // if not, try to integrate an accelerometer sample if(accel_valid) { _new_accel_sample(i,accel_report); accel_valid = _get_accel_sample(i,accel_report); continue; } // if not, we've only got gyro samples left in the buffer if(gyro_valid) { _new_gyro_sample(i,gyro_report); gyro_valid = _get_gyro_sample(i,gyro_report); } } } } bool AP_InertialSensor_PX4::_get_accel_sample(uint8_t i, struct accel_report &accel_report) { if (i<_num_accel_instances && _accel_fd[i] != -1 && ::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) && accel_report.timestamp != _last_accel_timestamp[i]) { return true; } return false; } bool AP_InertialSensor_PX4::_get_gyro_sample(uint8_t i, struct gyro_report &gyro_report) { if (i<_num_gyro_instances && _gyro_fd[i] != -1 && ::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && gyro_report.timestamp != _last_gyro_timestamp[i]) { return true; } return false; } #endif // CONFIG_HAL_BOARD