/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_AK8963.cpp * Code by Georgii Staroselskii. Emlid.com * * Sensor is conected to SPI port * */ #include #include #include "AP_Compass_AK8963.h" #define READ_FLAG 0x80 #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV0_REG 0x26 #define MPUREG_I2C_SLV0_CTRL 0x27 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 #define MPU9250_SPI_BACKEND 1 #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device /* bit definitions for MPUREG_USER_CTRL */ #define MPUREG_USER_CTRL 0x6A # define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */ # define BIT_USER_CTRL_I2C_IF_DIS 0x10 /* bit definitions for MPUREG_MST_CTRL */ #define MPUREG_I2C_MST_CTRL 0x24 # define I2C_SLV0_EN 0x80 # define I2C_MST_CLOCK_400KHZ 0x0D #define AK8963_I2C_ADDR 0x0c #define AK8963_WIA 0x00 # define AK8963_Device_ID 0x48 #define AK8963_INFO 0x01 #define AK8963_ST1 0x02 # define AK8963_DRDY 0x01 # define AK8963_DOR 0x02 #define AK8963_HXL 0x03 /* bit definitions for AK8963 CNTL1 */ #define AK8963_CNTL1 0x0A # define AK8963_CONTINUOUS_MODE1 0x2 # define AK8963_CONTINUOUS_MODE2 0x6 # define AK8963_SELFTEST_MODE 0x8 # define AK8963_POWERDOWN_MODE 0x0 # define AK8963_FUSE_MODE 0xf # define AK8963_16BIT_ADC 0x10 # define AK8963_14BIT_ADC 0x00 #define AK8963_CNTL2 0x0B # define AK8963_RESET 0x01 #define AK8963_ASTC 0x0C # define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40 #define AK8963_ASAX 0x10 #define AK8963_DEBUG 0 #define AK8963_SELFTEST 0 #if AK8963_DEBUG #define error(...) fprintf(stderr, __VA_ARGS__) #define debug(...) hal.console->printf(__VA_ARGS__) #define ASSERT(x) assert(x) #else #define error(...) #define debug(...) #define ASSERT(x) #endif extern const AP_HAL::HAL& hal; AK8963_MPU9250_SPI_Backend::AK8963_MPU9250_SPI_Backend() { _spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250); if (_spi == NULL) { hal.scheduler->panic(PSTR("Cannot get SPIDevice_MPU9250")); } _spi_sem = _spi->get_semaphore(); } bool AK8963_MPU9250_SPI_Backend::sem_take_blocking() { return _spi_sem->take(10); } bool AK8963_MPU9250_SPI_Backend::sem_give() { return _spi_sem->give(); } bool AK8963_MPU9250_SPI_Backend::sem_take_nonblocking() { /** * Take nonblocking from a TimerProcess context & * monitor for bad failures */ static int _sem_failure_count = 0; bool got = _spi_sem->take_nonblocking(); if (!got) { if (!hal.scheduler->system_initializing()) { _sem_failure_count++; if (_sem_failure_count > 100) { hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem " "100 times in a row, in " "AP_Compass_AK8963::_update")); } } return false; /* never reached */ } else { _sem_failure_count = 0; } return got; } void AK8963_MPU9250_SPI_Backend::read(uint8_t address, uint8_t *buf, uint32_t count) { ASSERT(count < 10); uint8_t tx[11]; uint8_t rx[11]; tx[0] = address | READ_FLAG; tx[1] = 0; _spi->transaction(tx, rx, count + 1); memcpy(buf, rx + 1, count); } void AK8963_MPU9250_SPI_Backend::write(uint8_t address, const uint8_t *buf, uint32_t count) { ASSERT(count < 2); uint8_t tx[2]; tx[0] = address; memcpy(tx+1, buf, count); _spi->transaction(tx, NULL, count + 1); } AP_Compass_AK8963_MPU9250::AP_Compass_AK8963_MPU9250() { product_id = AP_COMPASS_TYPE_AK8963_MPU9250; } void AP_Compass_AK8963_MPU9250::_dump_registers() { error(PSTR("MPU9250 registers\n")); for (uint8_t reg=0x00; reg<=0x7E; reg++) { uint8_t v = _backend->read(reg); error(("%02x:%02x "), (unsigned)reg, (unsigned)v); if (reg % 16 == 0) { error("\n"); } } error("\n"); } void AP_Compass_AK8963_MPU9250::_backend_reset() { _backend->write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); } bool AP_Compass_AK8963_MPU9250::_backend_init() { _backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */ _backend->write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); /* I2C configuration multi-master IIC 400KHz */ return true; } bool AP_Compass_AK8963_MPU9250::init() { #if MPU9250_SPI_BACKEND _backend = new AK8963_MPU9250_SPI_Backend(); if (_backend == NULL) { hal.scheduler->panic(PSTR("_backend coudln't be allocated")); } return AP_Compass_AK8963::init(); #else #error Wrong backend for AK8963 is selected /* other backends not implented yet */ return false; #endif } void AP_Compass_AK8963_MPU9250::_register_write(uint8_t address, uint8_t value) { _backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for _register_write. */ _backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _backend->write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */ _backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */ } void AP_Compass_AK8963_MPU9250::_register_read(uint8_t address, uint8_t count, uint8_t *value) { _backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ _backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ hal.scheduler->delay(10); _backend->read(MPUREG_EXT_SENS_DATA_00, value, count); } uint8_t AP_Compass_AK8963_MPU9250::_read_id() { return 1; } bool AP_Compass_AK8963_MPU9250::_read_raw() { uint8_t rx[14] = {0}; const uint8_t count = 9; _backend->read(MPUREG_EXT_SENS_DATA_00, rx, count); uint8_t st1 = rx[1]; /* Read ST1 register */ uint8_t st2 = rx[8]; /* End data read by reading ST2 register */ #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx])) if(!(st2 & 0x08)) { _mag_x = (float) int16_val(rx, 1); _mag_y = (float) int16_val(rx, 2); _mag_z = (float) int16_val(rx, 3); #if 1 error("%f %f %f st1: 0x%x st2: 0x%x\n", _mag_x, _mag_y, _mag_z, st1, st2); #endif if (_mag_x == 0 && _mag_y == 0 && _mag_z == 0) { return false; } return true; } else { return false; } } AP_Compass_AK8963::AP_Compass_AK8963() : Compass(), _backend(NULL) { _healthy[0] = true; _initialised = false; _mag_x_accum =_mag_y_accum = _mag_z_accum = 0; _mag_x =_mag_y = _mag_z = 0; _accum_count = 0; _magnetometer_adc_resolution = AK8963_16BIT_ADC; } /* stub to satisfy Compass API*/ void AP_Compass_AK8963::accumulate(void) { } bool AP_Compass_AK8963::_self_test() { bool success = false; /* see AK8963.pdf p.19 */ /* Set power-down mode */ _register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution); /* Turn the internal magnetic field on */ _register_write(AK8963_ASTC, AK8983_SELFTEST_MAGNETIC_FIELD_ON); /* Register value to self-test mode in 14-bit */ _register_write(AK8963_CNTL1, AK8963_SELFTEST_MODE | _magnetometer_adc_resolution); _start_conversion(); hal.scheduler->delay(20); _read_raw(); float hx = _mag_x; float hy = _mag_y; float hz = _mag_z; error("AK8963's SELF-TEST STARTED\n"); switch (_magnetometer_adc_resolution) { bool hx_is_in_range; bool hy_is_in_range; bool hz_is_in_range; case AK8963_14BIT_ADC: hx_is_in_range = (hx >= - 50) && (hx <= 50); hy_is_in_range = (hy >= - 50) && (hy <= 50); hz_is_in_range = (hz >= - 800) && (hz <= -200); if (hx_is_in_range && hy_is_in_range && hz_is_in_range) { success = true; } break; case AK8963_16BIT_ADC: hx_is_in_range = (hx >= -200) && (hx <= 200); hy_is_in_range = (hy >= -200) && (hy <= 200); hz_is_in_range = (hz >= -3200) && (hz <= -800); if (hx_is_in_range && hy_is_in_range && hz_is_in_range) { success = true; } break; default: success = false; hal.scheduler->panic(PSTR("Wrong AK8963's ADC resolution selected")); break; } error("AK8963's SELF-TEST ENDED: %f %f %f\n", hx, hy, hz); /* Turn the internal magnetic field off */ _register_write(AK8963_ASTC, 0x0); /* Register value to continuous measurement in 14-bit */ _register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution); return success; } bool AP_Compass_AK8963::init() { _healthy[0] = true; _field[0].x = 0.0f; _field[0].y = 0.0f; _field[0].z = 0.0f; hal.scheduler->suspend_timer_procs(); if (!_backend->sem_take_blocking()) { error("_spi_sem->take failed\n"); return false; } if (!_backend_init()) { _backend->sem_give(); return false; } _register_write(AK8963_CNTL2, AK8963_RESET); /* Reset AK8963 */ hal.scheduler->delay(1000); int id_mismatch_count; uint8_t deviceid; for (id_mismatch_count = 0; id_mismatch_count < 5; id_mismatch_count++) { _register_read(AK8963_WIA, 0x01, &deviceid); /* Read AK8963's id */ if (deviceid == AK8963_Device_ID) { break; } error("trying to read AK8963's ID once more...\n"); _backend_reset(); hal.scheduler->delay(100); _dump_registers(); } if (id_mismatch_count == 5) { _initialised = false; hal.console->printf("WRONG AK8963 DEVICE ID: 0x%x\n", (unsigned)deviceid); hal.scheduler->panic(PSTR("AK8963: bad DEVICE ID")); } _calibrate(); _initialised = true; #if AK8963_SELFTEST if (_self_test()) { _initialised = true; } else { _initialised = false; } #endif /* Register value to continuous measurement */ _register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution); _backend->sem_give(); hal.scheduler->resume_timer_procs(); hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Compass_AK8963::_update)); _start_conversion(); _initialised = true; return _initialised; } void AP_Compass_AK8963::_update() { if (hal.scheduler->micros() - _last_update_timestamp < 10000) { return; } if (!_backend->sem_take_nonblocking()) { return; } uint32_t timestamp = hal.scheduler->micros(); switch (_state) { case CONVERSION: _start_conversion(); _state = SAMPLE; break; case SAMPLE: _collect_samples(); _state = CONVERSION; break; case ERROR: break; default: break; } //error("state: %u %ld\n", (uint8_t) _state, hal.scheduler->micros() - timestamp); _last_update_timestamp = hal.scheduler->micros(); _backend->sem_give(); } bool AP_Compass_AK8963::_calibrate() { error("CALIBRATTION START\n"); _register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */ hal.scheduler->delay(10); uint8_t response[3]; _register_read(AK8963_ASAX, 0x03, response); for (int i = 0; i < 3; i++) { float data = response[i]; magnetometer_ASA[i] = ((data-128)/256+1); error("%d: %lf\n", i, magnetometer_ASA[i]); } error("CALIBRATTION END\n"); return true; } bool AP_Compass_AK8963::read() { if (!_initialised) { return false; } /* Update */ _field[0].x = _mag_x_accum * magnetometer_ASA[0] / _accum_count; _field[0].y = _mag_y_accum * magnetometer_ASA[1] / _accum_count; _field[0].z = _mag_z_accum * magnetometer_ASA[2] / _accum_count; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _accum_count = 0; // apply default board orientation for this compass type. This is // a noop on most boards _field[0].rotate(MAG_BOARD_ORIENTATION); // add user selectable orientation _field[0].rotate((enum Rotation)_orientation[0].get()); if (!_external) { // and add in AHRS_ORIENTATION setting if not an external compass _field[0].rotate(_board_orientation); } _field[0] += _offset[0].get(); #if 0 float x = _field[0].x; float y = _field[0].y; float z = _field[0].z; error("%f %f %f\n", x, y, z); #endif last_update = hal.scheduler->micros(); // record time of update return true; } void AP_Compass_AK8963::_start_conversion() { static const uint8_t address = AK8963_INFO; /* Read registers from INFO through ST2 */ static const uint8_t count = 0x09; _backend_init(); _backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */ _backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ _backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ } void AP_Compass_AK8963::_collect_samples() { if (!_initialised) { return; } if (!_read_raw()) { error("_read_raw failed\n"); } else { _mag_x_accum += _mag_x; _mag_y_accum += _mag_y; _mag_z_accum += _mag_z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 5; } } }