/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include
#include "AP_MotorsSingle.h"
#include
extern const AP_HAL::HAL& hal;
// init
void AP_MotorsSingle::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// make sure 6 output channels are mapped
for (uint8_t i=0; i<6; i++) {
add_motor_num(CH_1+i);
}
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_5] = true;
motor_enabled[AP_MOTORS_MOT_6] = true;
// setup actuator scaling
for (uint8_t i=0; i= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max);
float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
if (is_zero(rp_thrust_max)) {
rp_scale = 1.0f;
} else {
rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f);
if (rp_scale < 1.0f) {
limit.roll_pitch = true;
}
}
actuator_allowed = 1.0f - rp_scale * rp_thrust_max;
if (fabsf(yaw_thrust) > actuator_allowed) {
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
limit.yaw = true;
}
// combine roll, pitch and yaw on each actuator
// front servo
actuator[0] = rp_scale * roll_thrust - yaw_thrust;
// right servo
actuator[1] = rp_scale * pitch_thrust - yaw_thrust;
// rear servo
actuator[2] = -rp_scale * roll_thrust - yaw_thrust;
// left servo
actuator[3] = -rp_scale * pitch_thrust - yaw_thrust;
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3])));
thr_adj = throttle_thrust - throttle_avg_max;
if (thr_adj < (thrust_min_rpy - throttle_avg_max)) {
// Throttle can't be reduced to the desired level because this would mean roll or pitch control
// would not be able to reach the desired level because of lack of thrust.
thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max;
}
// calculate the throttle setting for the lift fan
_thrust_out = throttle_avg_max + thr_adj;
if (is_zero(_thrust_out)) {
limit.roll_pitch = true;
limit.yaw = true;
}
// limit thrust out for calculation of actuator gains
float thrust_out_actuator = constrain_float(MAX(_throttle_hover*0.5f,_thrust_out), 0.5f, 1.0f);
// calculate the maximum allowed actuator output and maximum requested actuator output
for (uint8_t i=0; i fabsf(actuator[i])) {
actuator_max = fabsf(actuator[i]);
}
}
if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) {
// roll, pitch and yaw request can not be achieved at full servo defection
// reduce roll, pitch and yaw to reduce the requested defection to maximum
limit.roll_pitch = true;
limit.yaw = true;
rp_scale = thrust_out_actuator/actuator_max;
} else {
rp_scale = 1.0f;
}
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
// static thrust is proportional to the airflow velocity squared
// therefore the torque of the roll and pitch actuators should be approximately proportional to
// the angle of attack multiplied by the static thrust.
for (uint8_t i=0; i