// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- static uint8_t failsafeCounter = 0; // we wait a second to take over the throttle and send the rover circling static void init_rc_in() { // set rc channel ranges g.channel_steer.set_angle(SERVO_MAX); g.channel_throttle.set_angle(100); // set rc dead zones g.channel_steer.set_dead_zone(60); g.channel_throttle.set_dead_zone(6); //set auxiliary ranges update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); } static void init_rc_out() { hal.rcout->enable_ch(CH_1); hal.rcout->enable_ch(CH_2); hal.rcout->enable_ch(CH_3); hal.rcout->enable_ch(CH_4); hal.rcout->enable_ch(CH_5); hal.rcout->enable_ch(CH_6); hal.rcout->enable_ch(CH_7); hal.rcout->enable_ch(CH_8); #if HIL_MODE != HIL_MODE_ATTITUDE hal.rcout->write(CH_1, g.channel_steer.radio_trim); // Initialization of servo outputs hal.rcout->write(CH_3, g.channel_throttle.radio_trim); hal.rcout->write(CH_5, g.rc_5.radio_trim); hal.rcout->write(CH_6, g.rc_6.radio_trim); hal.rcout->write(CH_7, g.rc_7.radio_trim); hal.rcout->write(CH_8, g.rc_8.radio_trim); #else hal.rcout->write(CH_1, 1500); // Initialization of servo outputs hal.rcout->write(CH_2, 1500); hal.rcout->write(CH_3, 1000); hal.rcout->write(CH_4, 1500); hal.rcout->write(CH_5, 1500); hal.rcout->write(CH_6, 1500); hal.rcout->write(CH_7, 1500); hal.rcout->write(CH_8, 2000); #endif } static void read_radio() { g.channel_steer.set_pwm(hal.rcin->read(CH_ROLL)); g.channel_throttle.set_pwm(hal.rcin->read(CH_3)); g.rc_5.set_pwm(hal.rcin->read(CH_5)); g.rc_6.set_pwm(hal.rcin->read(CH_6)); g.rc_7.set_pwm(hal.rcin->read(CH_7)); g.rc_8.set_pwm(hal.rcin->read(CH_8)); control_failsafe(g.channel_throttle.radio_in); g.channel_throttle.servo_out = g.channel_throttle.control_in; if (g.channel_throttle.servo_out > 50) { throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5); } else { throttle_nudge = 0; } /* cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in); */ } static void control_failsafe(uint16_t pwm) { if (!g.fs_throttle_enabled) { // no throttle failsafe return; } // Check for failsafe condition based on loss of GCS control if (rc_override_active) { if(millis() - rc_override_fs_timer > FAILSAFE_SHORT_TIME) { ch3_failsafe = true; } else { ch3_failsafe = false; } //Check for failsafe and debounce funky reads } else if (g.fs_throttle_enabled) { if (pwm < (unsigned)g.fs_throttle_value){ // we detect a failsafe from radio // throttle has dropped below the mark failsafeCounter++; if (failsafeCounter == 9){ gcs_send_text_fmt(PSTR("MSG FS ON %u"), (unsigned)pwm); }else if(failsafeCounter == 10) { ch3_failsafe = true; }else if (failsafeCounter > 10){ failsafeCounter = 11; } }else if(failsafeCounter > 0){ // we are no longer in failsafe condition // but we need to recover quickly failsafeCounter--; if (failsafeCounter > 3){ failsafeCounter = 3; } if (failsafeCounter == 1){ gcs_send_text_fmt(PSTR("MSG FS OFF %u"), (unsigned)pwm); }else if(failsafeCounter == 0) { ch3_failsafe = false; }else if (failsafeCounter <0){ failsafeCounter = -1; } } } } static void trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if (g.channel_steer.radio_in > 1400) { g.channel_steer.radio_trim = g.channel_steer.radio_in; // save to eeprom g.channel_steer.save_eeprom(); } } static void trim_radio() { for (int y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); }