#include "Copter.h" /** * * Detects failures of the ekf or inertial nav system triggers an alert * to the pilot and helps take countermeasures * */ #ifndef EKF_CHECK_ITERATIONS_MAX # define EKF_CHECK_ITERATIONS_MAX 10 // 1 second (ie. 10 iterations at 10hz) of bad variances signals a failure #endif #ifndef EKF_CHECK_WARNING_TIME # define EKF_CHECK_WARNING_TIME (30*1000) // warning text messages are sent to ground no more than every 30 seconds #endif //////////////////////////////////////////////////////////////////////////////// // EKF_check structure //////////////////////////////////////////////////////////////////////////////// static struct { uint8_t fail_count; // number of iterations ekf or dcm have been out of tolerances uint8_t bad_variance : 1; // true if ekf should be considered untrusted (fail_count has exceeded EKF_CHECK_ITERATIONS_MAX) uint32_t last_warn_time; // system time of last warning in milliseconds. Used to throttle text warnings sent to GCS } ekf_check_state; // ekf_check - detects if ekf variance are out of tolerance and triggers failsafe // should be called at 10hz void Copter::ekf_check() { // ensure EKF_CHECK_ITERATIONS_MAX is at least 7 static_assert(EKF_CHECK_ITERATIONS_MAX >= 7, "EKF_CHECK_ITERATIONS_MAX must be at least 7"); // exit immediately if ekf has no origin yet - this assumes the origin can never become unset Location temp_loc; if (!ahrs.get_origin(temp_loc)) { return; } // return immediately if motors are not armed, or ekf check is disabled if (!motors->armed() || (g.fs_ekf_thresh <= 0.0f)) { ekf_check_state.fail_count = 0; ekf_check_state.bad_variance = false; AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance; failsafe_ekf_off_event(); // clear failsafe return; } // compare compass and velocity variance vs threshold if (ekf_over_threshold()) { // if compass is not yet flagged as bad if (!ekf_check_state.bad_variance) { // increase counter ekf_check_state.fail_count++; if (ekf_check_state.fail_count == (EKF_CHECK_ITERATIONS_MAX-2)) { // we are two iterations away from declaring an EKF failsafe, ask the EKF if we can reset // yaw to resolve the issue ahrs.request_yaw_reset(); } if (ekf_check_state.fail_count == (EKF_CHECK_ITERATIONS_MAX-1)) { // we are just about to declare a EKF failsafe, ask the EKF if we can // change lanes to resolve the issue ahrs.check_lane_switch(); } // if counter above max then trigger failsafe if (ekf_check_state.fail_count >= EKF_CHECK_ITERATIONS_MAX) { // limit count from climbing too high ekf_check_state.fail_count = EKF_CHECK_ITERATIONS_MAX; ekf_check_state.bad_variance = true; AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE); // send message to gcs if ((AP_HAL::millis() - ekf_check_state.last_warn_time) > EKF_CHECK_WARNING_TIME) { gcs().send_text(MAV_SEVERITY_CRITICAL,"EKF variance"); ekf_check_state.last_warn_time = AP_HAL::millis(); } failsafe_ekf_event(); } } } else { // reduce counter if (ekf_check_state.fail_count > 0) { ekf_check_state.fail_count--; // if compass is flagged as bad and the counter reaches zero then clear flag if (ekf_check_state.bad_variance && ekf_check_state.fail_count == 0) { ekf_check_state.bad_variance = false; AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_VARIANCE_CLEARED); // clear failsafe failsafe_ekf_off_event(); } } } // set AP_Notify flags AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance; // To-Do: add ekf variances to extended status } // ekf_over_threshold - returns true if the ekf's variance are over the tolerance bool Copter::ekf_over_threshold() { // return false immediately if disabled if (g.fs_ekf_thresh <= 0.0f) { return false; } // use EKF to get variance float position_variance, vel_variance, height_variance, tas_variance; Vector3f mag_variance; Vector2f offset; ahrs.get_variances(vel_variance, position_variance, height_variance, mag_variance, tas_variance, offset); const float mag_max = fmaxf(fmaxf(mag_variance.x,mag_variance.y),mag_variance.z); // return true if two of compass, velocity and position variances are over the threshold OR velocity variance is twice the threshold uint8_t over_thresh_count = 0; if (mag_max >= g.fs_ekf_thresh) { over_thresh_count++; } bool optflow_healthy = false; #if OPTFLOW == ENABLED optflow_healthy = optflow.healthy(); #endif if (!optflow_healthy && (vel_variance >= (2.0f * g.fs_ekf_thresh))) { over_thresh_count += 2; } else if (vel_variance >= g.fs_ekf_thresh) { over_thresh_count++; } if ((position_variance >= g.fs_ekf_thresh && over_thresh_count >= 1) || over_thresh_count >= 2) { return true; } // either optflow relative or absolute position estimate OK if (optflow_position_ok() || ekf_position_ok()) { return false; } return true; } // failsafe_ekf_event - perform ekf failsafe void Copter::failsafe_ekf_event() { // return immediately if ekf failsafe already triggered if (failsafe.ekf) { return; } // EKF failsafe event has occurred failsafe.ekf = true; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_OCCURRED); // sometimes LAND *does* require GPS so ensure we are in non-GPS land if (control_mode == Mode::Number::LAND && landing_with_GPS()) { mode_land.do_not_use_GPS(); return; } // does this mode require position? if (!copter.flightmode->requires_GPS() && (g.fs_ekf_action != FS_EKF_ACTION_LAND_EVEN_STABILIZE)) { return; } // take action based on fs_ekf_action parameter switch (g.fs_ekf_action) { case FS_EKF_ACTION_ALTHOLD: // AltHold if (failsafe.radio || !set_mode(Mode::Number::ALT_HOLD, ModeReason::EKF_FAILSAFE)) { set_mode_land_with_pause(ModeReason::EKF_FAILSAFE); } break; case FS_EKF_ACTION_LAND: case FS_EKF_ACTION_LAND_EVEN_STABILIZE: default: set_mode_land_with_pause(ModeReason::EKF_FAILSAFE); break; } } // failsafe_ekf_off_event - actions to take when EKF failsafe is cleared void Copter::failsafe_ekf_off_event(void) { // return immediately if not in ekf failsafe if (!failsafe.ekf) { return; } failsafe.ekf = false; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_RESOLVED); } // check for ekf yaw reset and adjust target heading, also log position reset void Copter::check_ekf_reset() { // check for yaw reset float yaw_angle_change_rad; uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad); if (new_ekfYawReset_ms != ekfYawReset_ms) { attitude_control->inertial_frame_reset(); ekfYawReset_ms = new_ekfYawReset_ms; AP::logger().Write_Event(LogEvent::EKF_YAW_RESET); } #if AP_AHRS_NAVEKF_AVAILABLE && (HAL_NAVEKF2_AVAILABLE || HAL_NAVEKF3_AVAILABLE) // check for change in primary EKF, reset attitude target and log. AC_PosControl handles position target adjustment if ((ahrs.get_primary_core_index() != ekf_primary_core) && (ahrs.get_primary_core_index() != -1)) { attitude_control->inertial_frame_reset(); ekf_primary_core = ahrs.get_primary_core_index(); AP::logger().Write_Error(LogErrorSubsystem::EKF_PRIMARY, LogErrorCode(ekf_primary_core)); gcs().send_text(MAV_SEVERITY_WARNING, "EKF primary changed:%d", (unsigned)ekf_primary_core); } #endif } // check for high vibrations affecting altitude control void Copter::check_vibration() { uint32_t now = AP_HAL::millis(); // assume checks will succeed bool checks_succeeded = true; // check if vertical velocity and position innovations are positive (NKF3.IVD & NKF3.IPD are both positive) Vector3f vel_innovation; Vector3f pos_innovation; Vector3f mag_innovation; float tas_innovation; float yaw_innovation; if (!ahrs.get_innovations(vel_innovation, pos_innovation, mag_innovation, tas_innovation, yaw_innovation)) { checks_succeeded = false; } const bool innov_velD_posD_positive = is_positive(vel_innovation.z) && is_positive(pos_innovation.z); // check if vertical velocity variance is at least 1 (NK4.SV >= 1.0) float position_variance, vel_variance, height_variance, tas_variance; Vector3f mag_variance; Vector2f offset; if (!ahrs.get_variances(vel_variance, position_variance, height_variance, mag_variance, tas_variance, offset)) { checks_succeeded = false; } // if no failure if ((g2.fs_vibe_enabled == 0) || !checks_succeeded || !motors->armed() || !innov_velD_posD_positive || (vel_variance < 1.0f)) { if (vibration_check.high_vibes) { // start clear time if (vibration_check.clear_ms == 0) { vibration_check.clear_ms = now; return; } // turn off vibration compensation after 15 seconds if (now - vibration_check.clear_ms > 15000) { // restore ekf gains, reset timers and update user vibration_check.high_vibes = false; pos_control->set_vibe_comp(false); vibration_check.clear_ms = 0; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_VIBE, LogErrorCode::FAILSAFE_RESOLVED); gcs().send_text(MAV_SEVERITY_CRITICAL, "Vibration compensation OFF"); } } vibration_check.start_ms = 0; return; } // start timer if (vibration_check.start_ms == 0) { vibration_check.start_ms = now; vibration_check.clear_ms = 0; return; } // check if failure has persisted for at least 1 second if (now - vibration_check.start_ms > 1000) { if (!vibration_check.high_vibes) { // switch ekf to use resistant gains vibration_check.high_vibes = true; pos_control->set_vibe_comp(true); AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_VIBE, LogErrorCode::FAILSAFE_OCCURRED); gcs().send_text(MAV_SEVERITY_CRITICAL, "Vibration compensation ON"); } } }