'''
Fly Copter in SITL

AP_FLAKE8_CLEAN
'''

from __future__ import print_function
import copy
import math
import os
import shutil
import time
import numpy
import operator

from pymavlink import quaternion
from pymavlink import mavutil
from pymavlink import mavextra
from pymavlink import rotmat

from pysim import util
from pysim import vehicleinfo

from common import AutoTest
from common import NotAchievedException, AutoTestTimeoutException, PreconditionFailedException
from common import Test
from common import MAV_POS_TARGET_TYPE_MASK

from pymavlink.rotmat import Vector3

# get location of scripts
testdir = os.path.dirname(os.path.realpath(__file__))
SITL_START_LOCATION = mavutil.location(-35.362938, 149.165085, 584, 270)

# Flight mode switch positions are set-up in arducopter.param to be
#   switch 1 = Circle
#   switch 2 = Land
#   switch 3 = RTL
#   switch 4 = Auto
#   switch 5 = Loiter
#   switch 6 = Stabilize


class AutoTestCopter(AutoTest):
    @staticmethod
    def get_not_armable_mode_list():
        return ["AUTO", "AUTOTUNE", "BRAKE", "CIRCLE", "FLIP", "LAND", "RTL", "SMART_RTL", "AVOID_ADSB", "FOLLOW"]

    @staticmethod
    def get_not_disarmed_settable_modes_list():
        return ["FLIP", "AUTOTUNE"]

    @staticmethod
    def get_no_position_not_settable_modes_list():
        return []

    @staticmethod
    def get_position_armable_modes_list():
        return ["DRIFT", "GUIDED", "LOITER", "POSHOLD", "THROW"]

    @staticmethod
    def get_normal_armable_modes_list():
        return ["ACRO", "ALT_HOLD", "STABILIZE", "GUIDED_NOGPS"]

    def log_name(self):
        return "ArduCopter"

    def test_filepath(self):
        return os.path.realpath(__file__)

    def default_speedup(self):
        return 100

    def set_current_test_name(self, name):
        self.current_test_name_directory = "ArduCopter_Tests/" + name + "/"

    def sitl_start_location(self):
        return SITL_START_LOCATION

    def mavproxy_options(self):
        ret = super(AutoTestCopter, self).mavproxy_options()
        if self.frame != 'heli':
            ret.append('--quadcopter')
        return ret

    def sitl_streamrate(self):
        return 5

    def vehicleinfo_key(self):
        return 'ArduCopter'

    def default_frame(self):
        return "+"

    def apply_defaultfile_parameters(self):
        # Copter passes in a defaults_filepath in place of applying
        # parameters afterwards.
        pass

    def defaults_filepath(self):
        return self.model_defaults_filepath(self.frame)

    def wait_disarmed_default_wait_time(self):
        return 120

    def close(self):
        super(AutoTestCopter, self).close()

        # [2014/05/07] FC Because I'm doing a cross machine build
        # (source is on host, build is on guest VM) I cannot hard link
        # This flag tells me that I need to copy the data out
        if self.copy_tlog:
            shutil.copy(self.logfile, self.buildlog)

    def is_copter(self):
        return True

    def get_stick_arming_channel(self):
        return int(self.get_parameter("RCMAP_YAW"))

    def get_disarm_delay(self):
        return int(self.get_parameter("DISARM_DELAY"))

    def set_autodisarm_delay(self, delay):
        self.set_parameter("DISARM_DELAY", delay)

    def user_takeoff(self, alt_min=30, timeout=30, max_err=5):
        '''takeoff using mavlink takeoff command'''
        self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF,
                     0, # param1
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     alt_min # param7
                     )
        self.wait_for_alt(alt_min, timeout=timeout, max_err=max_err)

    def takeoff(self,
                alt_min=30,
                takeoff_throttle=1700,
                require_absolute=True,
                mode="STABILIZE",
                timeout=120,
                max_err=5):
        """Takeoff get to 30m altitude."""
        self.progress("TAKEOFF")
        self.change_mode(mode)
        if not self.armed():
            self.wait_ready_to_arm(require_absolute=require_absolute, timeout=timeout)
            self.zero_throttle()
            self.arm_vehicle()
        if mode == 'GUIDED':
            self.user_takeoff(alt_min=alt_min, timeout=timeout, max_err=max_err)
        else:
            self.set_rc(3, takeoff_throttle)
        self.wait_for_alt(alt_min=alt_min, timeout=timeout, max_err=max_err)
        self.hover()
        self.progress("TAKEOFF COMPLETE")

    def wait_for_alt(self, alt_min=30, timeout=30, max_err=5):
        """Wait for minimum altitude to be reached."""
        self.wait_altitude(alt_min - 1,
                           (alt_min + max_err),
                           relative=True,
                           timeout=timeout)

    def land_and_disarm(self, timeout=60):
        """Land the quad."""
        self.progress("STARTING LANDING")
        self.change_mode("LAND")
        self.wait_landed_and_disarmed(timeout=timeout)

    def wait_landed_and_disarmed(self, min_alt=6, timeout=60):
        """Wait to be landed and disarmed"""
        m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        alt = m.relative_alt / 1000.0 # mm -> m
        if alt > min_alt:
            self.wait_for_alt(min_alt, timeout=timeout)
#        self.wait_statustext("SIM Hit ground", timeout=timeout)
        self.wait_disarmed()

    def hover(self, hover_throttle=1500):
        self.set_rc(3, hover_throttle)

    # Climb/descend to a given altitude
    def setAlt(self, desiredAlt=50):
        pos = self.mav.location(relative_alt=True)
        if pos.alt > desiredAlt:
            self.set_rc(3, 1300)
            self.wait_altitude((desiredAlt-5), desiredAlt, relative=True)
        if pos.alt < (desiredAlt-5):
            self.set_rc(3, 1800)
            self.wait_altitude((desiredAlt-5), desiredAlt, relative=True)
        self.hover()

    # Takeoff, climb to given altitude, and fly east for 10 seconds
    def takeoffAndMoveAway(self, dAlt=50, dDist=50):
        self.progress("Centering sticks")
        self.set_rc_from_map({
            1: 1500,
            2: 1500,
            3: 1000,
            4: 1500,
        })
        self.takeoff(alt_min=dAlt, mode='GUIDED')
        self.change_mode("ALT_HOLD")

        self.progress("Yaw to east")
        self.set_rc(4, 1580)
        self.wait_heading(90)
        self.set_rc(4, 1500)

        self.progress("Fly eastbound away from home")
        self.set_rc(2, 1800)
        self.delay_sim_time(10)
        self.set_rc(2, 1500)
        self.hover()
        self.progress("Copter staging 50 meters east of home at 50 meters altitude In mode Alt Hold")

    # loiter - fly south west, then loiter within 5m position and altitude
    def ModeLoiter(self, holdtime=10, maxaltchange=5, maxdistchange=5):
        """Hold loiter position."""
        self.takeoff(10, mode="LOITER")

        # first aim south east
        self.progress("turn south east")
        self.set_rc(4, 1580)
        self.wait_heading(170)
        self.set_rc(4, 1500)

        # fly south east 50m
        self.set_rc(2, 1100)
        self.wait_distance(50)
        self.set_rc(2, 1500)

        # wait for copter to slow moving
        self.wait_groundspeed(0, 2)

        m = self.mav.recv_match(type='VFR_HUD', blocking=True)
        start_altitude = m.alt
        start = self.mav.location()
        tstart = self.get_sim_time()
        self.progress("Holding loiter at %u meters for %u seconds" %
                      (start_altitude, holdtime))
        while self.get_sim_time_cached() < tstart + holdtime:
            m = self.mav.recv_match(type='VFR_HUD', blocking=True)
            pos = self.mav.location()
            delta = self.get_distance(start, pos)
            alt_delta = math.fabs(m.alt - start_altitude)
            self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt))
            if alt_delta > maxaltchange:
                raise NotAchievedException(
                    "Loiter alt shifted %u meters (> limit %u)" %
                    (alt_delta, maxaltchange))
            if delta > maxdistchange:
                raise NotAchievedException(
                    "Loiter shifted %u meters (> limit of %u)" %
                    (delta, maxdistchange))
        self.progress("Loiter OK for %u seconds" % holdtime)

        self.progress("Climb to 30m")
        self.change_alt(30)

        self.progress("Descend to 20m")
        self.change_alt(20)

        self.do_RTL()

    def ModeAltHold(self):
        '''Test AltHold Mode'''
        self.takeoff(10, mode="ALT_HOLD")
        self.watch_altitude_maintained(altitude_min=9, altitude_max=11)
        # feed in full elevator and aileron input and make sure we
        # retain altitude:
        self.set_rc_from_map({
            1: 1000,
            2: 1000,
        })
        self.watch_altitude_maintained(altitude_min=9, altitude_max=11)
        self.set_rc_from_map({
            1: 1500,
            2: 1500,
        })
        self.do_RTL()

    def fly_to_origin(self, final_alt=10):
        origin = self.poll_message("GPS_GLOBAL_ORIGIN")
        self.change_mode("GUIDED")
        self.guided_move_global_relative_alt(origin.latitude,
                                             origin.longitude,
                                             final_alt)

    def change_alt(self, alt_min, climb_throttle=1920, descend_throttle=1080):
        """Change altitude."""
        def adjust_altitude(current_alt, target_alt, accuracy):
            if math.fabs(current_alt - target_alt) <= accuracy:
                self.hover()
            elif current_alt < target_alt:
                self.set_rc(3, climb_throttle)
            else:
                self.set_rc(3, descend_throttle)
        self.wait_altitude(
            (alt_min - 5),
            alt_min,
            relative=True,
            called_function=lambda current_alt, target_alt: adjust_altitude(current_alt, target_alt, 1)
        )
        self.hover()

    def RecordThenPlayMission(self, side=50, timeout=300):
        '''Use switches to toggle in mission, then fly it'''
        self.takeoff(20, mode="ALT_HOLD")

        """Fly a square, flying N then E ."""
        tstart = self.get_sim_time()

        # ensure all sticks in the middle
        self.set_rc_from_map({
            1: 1500,
            2: 1500,
            3: 1500,
            4: 1500,
        })

        # switch to loiter mode temporarily to stop us from rising
        self.change_mode('LOITER')

        # first aim north
        self.progress("turn right towards north")
        self.set_rc(4, 1580)
        self.wait_heading(10)
        self.set_rc(4, 1500)

        # save bottom left corner of box as waypoint
        self.progress("Save WP 1 & 2")
        self.save_wp()

        # switch back to ALT_HOLD mode
        self.change_mode('ALT_HOLD')

        # pitch forward to fly north
        self.progress("Going north %u meters" % side)
        self.set_rc(2, 1300)
        self.wait_distance(side)
        self.set_rc(2, 1500)

        # save top left corner of square as waypoint
        self.progress("Save WP 3")
        self.save_wp()

        # roll right to fly east
        self.progress("Going east %u meters" % side)
        self.set_rc(1, 1700)
        self.wait_distance(side)
        self.set_rc(1, 1500)

        # save top right corner of square as waypoint
        self.progress("Save WP 4")
        self.save_wp()

        # pitch back to fly south
        self.progress("Going south %u meters" % side)
        self.set_rc(2, 1700)
        self.wait_distance(side)
        self.set_rc(2, 1500)

        # save bottom right corner of square as waypoint
        self.progress("Save WP 5")
        self.save_wp()

        # roll left to fly west
        self.progress("Going west %u meters" % side)
        self.set_rc(1, 1300)
        self.wait_distance(side)
        self.set_rc(1, 1500)

        # save bottom left corner of square (should be near home) as waypoint
        self.progress("Save WP 6")
        self.save_wp()

        # reduce throttle again
        self.set_rc(3, 1500)

        # descend to 10m
        self.progress("Descend to 10m in Loiter")
        self.change_mode('LOITER')
        self.set_rc(3, 1200)
        time_left = timeout - (self.get_sim_time() - tstart)
        self.progress("timeleft = %u" % time_left)
        if time_left < 20:
            time_left = 20
        self.wait_altitude(-10, 10, timeout=time_left, relative=True)
        self.set_rc(3, 1500)
        self.save_wp()

        # save the stored mission to file
        mavproxy = self.start_mavproxy()
        num_wp = self.save_mission_to_file_using_mavproxy(
            mavproxy,
            os.path.join(testdir, "ch7_mission.txt"))
        self.stop_mavproxy(mavproxy)
        if not num_wp:
            raise NotAchievedException("save_mission_to_file failed")

        self.progress("test: Fly a mission from 1 to %u" % num_wp)
        self.change_mode('AUTO')
        self.set_current_waypoint(1)
        self.wait_waypoint(0, num_wp-1, timeout=500)
        self.progress("test: MISSION COMPLETE: passed!")
        self.land_and_disarm()

    # enter RTL mode and wait for the vehicle to disarm
    def do_RTL(self, distance_min=None, check_alt=True, distance_max=10, timeout=250, quiet=False):
        """Enter RTL mode and wait for the vehicle to disarm at Home."""
        self.change_mode("RTL")
        self.hover()
        self.wait_rtl_complete(check_alt=check_alt, distance_max=distance_max, timeout=timeout, quiet=True)

    def wait_rtl_complete(self, check_alt=True, distance_max=10, timeout=250, quiet=False):
        """Wait for RTL to reach home and disarm"""
        self.progress("Waiting RTL to reach Home and disarm")
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < tstart + timeout:
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            alt = m.relative_alt / 1000.0 # mm -> m
            home_distance = self.distance_to_home(use_cached_home=True)
            home = ""
            alt_valid = alt <= 1
            distance_valid = home_distance < distance_max
            if check_alt:
                if alt_valid and distance_valid:
                    home = "HOME"
            else:
                if distance_valid:
                    home = "HOME"
            if not quiet:
                self.progress("Alt: %.02f  HomeDist: %.02f %s" %
                              (alt, home_distance, home))

            # our post-condition is that we are disarmed:
            if not self.armed():
                if home == "":
                    raise NotAchievedException("Did not get home")
                # success!
                return

        raise AutoTestTimeoutException("Did not get home and disarm")

    def LoiterToAlt(self):
        """Loiter-To-Alt"""

        self.context_push()

        ex = None
        try:

            self.set_parameters({
                "PLND_ENABLED": 1,
                "PLND_TYPE": 4,
            })

            self.set_analog_rangefinder_parameters()

            self.reboot_sitl()

            num_wp = self.load_mission("copter_loiter_to_alt.txt")

            self.change_mode('LOITER')

            self.install_terrain_handlers_context()
            self.wait_ready_to_arm()

            self.arm_vehicle()

            self.change_mode('AUTO')

            self.set_rc(3, 1550)

            self.wait_current_waypoint(2)

            self.set_rc(3, 1500)

            self.wait_waypoint(0, num_wp-1, timeout=500)

            self.wait_disarmed()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()
        self.reboot_sitl()

        if ex is not None:
            raise ex

    # Tests all actions and logic behind the radio failsafe
    def ThrottleFailsafe(self, side=60, timeout=360):
        '''Test Throttle Failsafe'''
        self.start_subtest("If you haven't taken off yet RC failure should be instant disarm")
        self.change_mode("STABILIZE")
        self.set_parameter("DISARM_DELAY", 0)
        self.arm_vehicle()
        self.set_parameter("SIM_RC_FAIL", 1)
        self.disarm_wait(timeout=1)
        self.set_parameter("SIM_RC_FAIL", 0)
        self.set_parameter("DISARM_DELAY", 10)

        # Trigger an RC failure with the failsafe disabled. Verify no action taken.
        self.start_subtest("Radio failsafe disabled test: FS_THR_ENABLE=0 should take no failsafe action")
        self.set_parameter('FS_THR_ENABLE', 0)
        self.set_parameter('FS_OPTIONS', 0)
        self.takeoffAndMoveAway()
        self.set_parameter("SIM_RC_FAIL", 1)
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.set_parameter("SIM_RC_FAIL", 0)
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.end_subtest("Completed Radio failsafe disabled test")

        # Trigger an RC failure, verify radio failsafe triggers,
        # restore radio, verify RC function by changing modes to cicle
        # and stabilize.
        self.start_subtest("Radio failsafe recovery test")
        self.set_parameter('FS_THR_ENABLE', 1)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("RTL")
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 0)
        self.delay_sim_time(5)
        self.set_rc(5, 1050)
        self.wait_mode("CIRCLE")
        self.set_rc(5, 1950)
        self.wait_mode("STABILIZE")
        self.end_subtest("Completed Radio failsafe recovery test")

        # Trigger and RC failure, verify failsafe triggers and RTL completes
        self.start_subtest("Radio failsafe RTL with no options test: FS_THR_ENABLE=1 & FS_OPTIONS=0")
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("RTL")
        self.wait_rtl_complete()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe RTL with no options test")

        # Trigger and RC failure, verify failsafe triggers and land completes
        self.start_subtest("Radio failsafe LAND with no options test: FS_THR_ENABLE=3 & FS_OPTIONS=0")
        self.set_parameter('FS_THR_ENABLE', 3)
        self.takeoffAndMoveAway()
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe LAND with no options test")

        # Trigger and RC failure, verify failsafe triggers and SmartRTL completes
        self.start_subtest("Radio failsafe SmartRTL->RTL with no options test: FS_THR_ENABLE=4 & FS_OPTIONS=0")
        self.set_parameter('FS_THR_ENABLE', 4)
        self.takeoffAndMoveAway()
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe SmartRTL->RTL with no options test")

        # Trigger and RC failure, verify failsafe triggers and SmartRTL completes
        self.start_subtest("Radio failsafe SmartRTL->Land with no options test: FS_THR_ENABLE=5 & FS_OPTIONS=0")
        self.set_parameter('FS_THR_ENABLE', 5)
        self.takeoffAndMoveAway()
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe SmartRTL_Land with no options test")

        # Trigger a GPS failure and RC failure, verify RTL fails into
        # land mode and completes
        self.start_subtest("Radio failsafe RTL fails into land mode due to bad position.")
        self.set_parameter('FS_THR_ENABLE', 1)
        self.takeoffAndMoveAway()
        self.set_parameter('SIM_GPS_DISABLE', 1)
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.set_parameter('SIM_GPS_DISABLE', 0)
        self.wait_ekf_happy()
        self.end_subtest("Completed Radio failsafe RTL fails into land mode due to bad position.")

        # Trigger a GPS failure and RC failure, verify SmartRTL fails
        # into land mode and completes
        self.start_subtest("Radio failsafe SmartRTL->RTL fails into land mode due to bad position.")
        self.set_parameter('FS_THR_ENABLE', 4)
        self.takeoffAndMoveAway()
        self.set_parameter('SIM_GPS_DISABLE', 1)
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.set_parameter('SIM_GPS_DISABLE', 0)
        self.wait_ekf_happy()
        self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into land mode due to bad position.")

        # Trigger a GPS failure and RC failure, verify SmartRTL fails
        # into land mode and completes
        self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to bad position.")
        self.set_parameter('FS_THR_ENABLE', 5)
        self.takeoffAndMoveAway()
        self.set_parameter('SIM_GPS_DISABLE', 1)
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.set_parameter('SIM_GPS_DISABLE', 0)
        self.wait_ekf_happy()
        self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to bad position.")

        # Trigger a GPS failure, then restore the GPS. Trigger an RC
        # failure, verify SmartRTL fails into RTL and completes
        self.start_subtest("Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.")
        self.set_parameter('FS_THR_ENABLE', 4)
        self.takeoffAndMoveAway()
        self.set_parameter('SIM_GPS_DISABLE', 1)
        self.wait_statustext("SmartRTL deactivated: bad position", timeout=60)
        self.set_parameter('SIM_GPS_DISABLE', 0)
        self.wait_ekf_happy()
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("RTL")
        self.wait_rtl_complete()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe SmartRTL->RTL fails into RTL mode due to no path.")

        # Trigger a GPS failure, then restore the GPS. Trigger an RC
        # failure, verify SmartRTL fails into Land and completes
        self.start_subtest("Radio failsafe SmartRTL->LAND fails into land mode due to no path.")
        self.set_parameter('FS_THR_ENABLE', 5)
        self.takeoffAndMoveAway()
        self.set_parameter('SIM_GPS_DISABLE', 1)
        self.wait_statustext("SmartRTL deactivated: bad position", timeout=60)
        self.set_parameter('SIM_GPS_DISABLE', 0)
        self.wait_ekf_happy()
        self.delay_sim_time(5)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe SmartRTL->LAND fails into land mode due to no path.")

        # Trigger an RC failure in guided mode with the option enabled
        # to continue in guided. Verify no failsafe action takes place
        self.start_subtest("Radio failsafe with option to continue in guided mode: FS_THR_ENABLE=1 & FS_OPTIONS=4")
        self.set_parameter("SYSID_MYGCS", self.mav.source_system)
        self.setGCSfailsafe(1)
        self.set_parameter('FS_THR_ENABLE', 1)
        self.set_parameter('FS_OPTIONS', 4)
        self.takeoffAndMoveAway()
        self.change_mode("GUIDED")
        self.set_parameter("SIM_RC_FAIL", 1)
        self.delay_sim_time(5)
        self.wait_mode("GUIDED")
        self.set_parameter("SIM_RC_FAIL", 0)
        self.delay_sim_time(5)
        self.change_mode("ALT_HOLD")
        self.setGCSfailsafe(0)
        # self.change_mode("RTL")
        # self.wait_disarmed()
        self.end_subtest("Completed Radio failsafe with option to continue in guided mode")

        # Trigger an RC failure in AUTO mode with the option enabled
        # to continue the mission. Verify no failsafe action takes
        # place
        self.start_subtest("Radio failsafe RTL with option to continue mission: FS_THR_ENABLE=1 & FS_OPTIONS=1")
        self.set_parameter('FS_OPTIONS', 1)
        self.progress("# Load copter_mission")
        num_wp = self.load_mission("copter_mission.txt", strict=False)
        if not num_wp:
            raise NotAchievedException("load copter_mission failed")
#        self.takeoffAndMoveAway()
        self.change_mode("AUTO")
        self.set_parameter("SIM_RC_FAIL", 1)
        self.delay_sim_time(5)
        self.wait_mode("AUTO")
        self.set_parameter("SIM_RC_FAIL", 0)
        self.delay_sim_time(5)
        self.wait_mode("AUTO")
        # self.change_mode("RTL")
        # self.wait_disarmed()
        self.end_subtest("Completed Radio failsafe RTL with option to continue mission")

        # Trigger an RC failure in AUTO mode without the option
        # enabled to continue. Verify failsafe triggers and RTL
        # completes
        self.start_subtest("Radio failsafe RTL in mission without "
                           "option to continue should RTL: FS_THR_ENABLE=1 & FS_OPTIONS=0")
        self.set_parameter('FS_OPTIONS', 0)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.wait_mode("RTL")
        self.wait_rtl_complete()
        self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_MISSION)
        self.set_parameter("SIM_RC_FAIL", 0)
        self.end_subtest("Completed Radio failsafe RTL in mission without option to continue")

        self.progress("All radio failsafe tests complete")
        self.set_parameter('FS_THR_ENABLE', 0)
        self.reboot_sitl()

    # Tests all actions and logic behind the GCS failsafe
    def GCSFailsafe(self, side=60, timeout=360):
        '''Test GCS Failsafe'''
        try:
            self.test_gcs_failsafe(side=side, timeout=timeout)
        except Exception as ex:
            self.setGCSfailsafe(0)
            self.set_parameter('FS_OPTIONS', 0)
            self.disarm_vehicle(force=True)
            self.reboot_sitl()
            raise ex

    def test_gcs_failsafe(self, side=60, timeout=360):
        # Test double-SmartRTL; ensure we do SmarRTL twice rather than
        # landing (tests fix for actual bug)
        self.set_parameter("SYSID_MYGCS", self.mav.source_system)
        self.context_push()
        self.start_subtest("GCS failsafe SmartRTL twice")
        self.setGCSfailsafe(3)
        self.set_parameter('FS_OPTIONS', 8)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)

        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_statustext("GCS Failsafe")

        def ensure_smartrtl(mav, m):
            if m.get_type() != "HEARTBEAT":
                return
            # can't use mode_is here because we're in the message hook
            print("Mode: %s" % self.mav.flightmode)
            if self.mav.flightmode != "SMART_RTL":
                raise NotAchievedException("Not in SMART_RTL")
        self.install_message_hook_context(ensure_smartrtl)

        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.set_heartbeat_rate(0)
        self.wait_statustext("GCS Failsafe")

        self.wait_disarmed()

        self.end_subtest("GCS failsafe SmartRTL twice")
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.context_pop()

        # Trigger telemetry loss with failsafe disabled. Verify no action taken.
        self.start_subtest("GCS failsafe disabled test: FS_GCS_ENABLE=0 should take no failsafe action")
        self.setGCSfailsafe(0)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.set_heartbeat_rate(self.speedup)
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.end_subtest("Completed GCS failsafe disabled test")

        # Trigger telemetry loss with failsafe enabled. Verify
        # failsafe triggers to RTL. Restore telemetry, verify failsafe
        # clears, and change modes.
        self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0")
        self.setGCSfailsafe(1)
        self.set_parameter('FS_OPTIONS', 0)
        self.set_heartbeat_rate(0)
        self.wait_mode("RTL")
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.change_mode("LOITER")
        self.end_subtest("Completed GCS failsafe recovery test")

        # Trigger telemetry loss with failsafe enabled. Verify
        # failsafe triggers to RTL. Restore telemetry, verify failsafe
        # clears, and change modes.
        self.start_subtest("GCS failsafe recovery test: FS_GCS_ENABLE=1 & FS_OPTIONS=0 & FS_GCS_TIMEOUT=10")
        self.setGCSfailsafe(1)
        self.set_parameter('FS_OPTIONS', 0)
        old_gcs_timeout = self.get_parameter("FS_GCS_TIMEOUT")
        new_gcs_timeout = old_gcs_timeout * 2
        self.set_parameter("FS_GCS_TIMEOUT", new_gcs_timeout)
        self.set_heartbeat_rate(0)
        self.delay_sim_time(old_gcs_timeout + (new_gcs_timeout - old_gcs_timeout) / 2)
        self.assert_mode("LOITER")
        self.wait_mode("RTL")
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.change_mode("LOITER")
        self.set_parameter('FS_GCS_TIMEOUT', old_gcs_timeout)
        self.end_subtest("Completed GCS failsafe recovery test")

        # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and RTL completes
        self.start_subtest("GCS failsafe RTL with no options test: FS_GCS_ENABLE=1 & FS_OPTIONS=0")
        self.setGCSfailsafe(1)
        self.set_parameter('FS_OPTIONS', 0)
        self.set_heartbeat_rate(0)
        self.wait_mode("RTL")
        self.wait_rtl_complete()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe RTL with no options test")

        # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and land completes
        self.start_subtest("GCS failsafe LAND with no options test: FS_GCS_ENABLE=5 & FS_OPTIONS=0")
        self.setGCSfailsafe(5)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe land with no options test")

        # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes
        self.start_subtest("GCS failsafe SmartRTL->RTL with no options test: FS_GCS_ENABLE=3 & FS_OPTIONS=0")
        self.setGCSfailsafe(3)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe SmartRTL->RTL with no options test")

        # Trigger telemetry loss with failsafe enabled. Verify failsafe triggers and SmartRTL completes
        self.start_subtest("GCS failsafe SmartRTL->Land with no options test: FS_GCS_ENABLE=4 & FS_OPTIONS=0")
        self.setGCSfailsafe(4)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe SmartRTL->Land with no options test")

        # Trigger telemetry loss with an invalid failsafe value. Verify failsafe triggers and RTL completes
        self.start_subtest("GCS failsafe invalid value with no options test: FS_GCS_ENABLE=99 & FS_OPTIONS=0")
        self.setGCSfailsafe(99)
        self.takeoffAndMoveAway()
        self.set_heartbeat_rate(0)
        self.wait_mode("RTL")
        self.wait_rtl_complete()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe invalid value with no options test")

        # Trigger telemetry loss with failsafe enabled to test FS_OPTIONS settings
        self.start_subtest("GCS failsafe with option bit tests: FS_GCS_ENABLE=1 & FS_OPTIONS=64/2/16")
        num_wp = self.load_mission("copter_mission.txt", strict=False)
        if not num_wp:
            raise NotAchievedException("load copter_mission failed")
        self.setGCSfailsafe(1)
        self.set_parameter('FS_OPTIONS', 16)
        self.takeoffAndMoveAway()
        self.progress("Testing continue in pilot controlled modes")
        self.set_heartbeat_rate(0)
        self.wait_statustext("GCS Failsafe - Continuing Pilot Control", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)

        self.progress("Testing continue in auto mission")
        self.set_parameter('FS_OPTIONS', 2)
        self.change_mode("AUTO")
        self.delay_sim_time(5)
        self.set_heartbeat_rate(0)
        self.wait_statustext("GCS Failsafe - Continuing Auto Mode", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("AUTO")
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)

        self.progress("Testing continue landing in land mode")
        self.set_parameter('FS_OPTIONS', 8)
        self.change_mode("LAND")
        self.delay_sim_time(5)
        self.set_heartbeat_rate(0)
        self.wait_statustext("GCS Failsafe - Continuing Landing", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_heartbeat_rate(self.speedup)
        self.wait_statustext("GCS Failsafe Cleared", timeout=60)
        self.end_subtest("Completed GCS failsafe with option bits")

        self.setGCSfailsafe(0)
        self.set_parameter('FS_OPTIONS', 0)
        self.progress("All GCS failsafe tests complete")

    def CustomController(self, timeout=300):
        '''Test Custom Controller'''
        self.progress("Configure custom controller parameters")
        self.set_parameters({
            'CC_TYPE': 2,
            'CC_AXIS_MASK': 7,
            'RC6_OPTION': 109,
        })
        self.set_rc(6, 1000)
        self.reboot_sitl()

        if self.get_parameter("CC_TYPE") != 2 :
            raise NotAchievedException("Custom controller is not switched to PID backend.")

        # check if we can retrive any param inside PID backend
        self.get_parameter("CC2_RAT_YAW_P")

        # takeoff in GPS mode and switch to CIRCLE
        self.takeoff(10, mode="LOITER", takeoff_throttle=2000)
        self.change_mode("CIRCLE")

        self.context_push()
        self.context_collect('STATUSTEXT')

        # switch custom controller on
        self.set_rc(6, 2000)
        self.wait_statustext("Custom controller is ON", check_context=True)

        # wait 20 second to see if the custom controller destabilize the aircraft
        if self.wait_altitude(7, 13, relative=True, minimum_duration=20) :
            raise NotAchievedException("Custom controller is not stable.")

        # switch custom controller off
        self.set_rc(6, 1000)
        self.wait_statustext("Custom controller is OFF", check_context=True)

        self.context_pop()
        self.do_RTL()
        self.progress("Custom controller test complete")

    # Tests all actions and logic behind the battery failsafe
    def BatteryFailsafe(self, timeout=300):
        '''Fly Battery Failsafe'''
        self.context_push()
        ex = None
        try:
            self.test_battery_failsafe(timeout=timeout)
        except Exception as e:
            self.print_exception_caught(e)
            self.disarm_vehicle(force=True)
            ex = e
        self.context_pop()
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def test_battery_failsafe(self, timeout=300):
        self.progress("Configure battery failsafe parameters")
        self.set_parameters({
            'SIM_SPEEDUP': 4,
            'BATT_LOW_VOLT': 11.5,
            'BATT_CRT_VOLT': 10.1,
            'BATT_FS_LOW_ACT': 0,
            'BATT_FS_CRT_ACT': 0,
            'FS_OPTIONS': 0,
            'SIM_BATT_VOLTAGE': 12.5,
        })

        # Trigger low battery condition with failsafe disabled. Verify
        # no action taken.
        self.start_subtest("Batt failsafe disabled test")
        self.takeoffAndMoveAway()
        m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
        if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK:
            raise NotAchievedException("Expected state ok")
        self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
        self.wait_statustext("Battery 1 is low", timeout=60)
        m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
        if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_LOW:
            raise NotAchievedException("Expected state low")
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
        self.wait_statustext("Battery 1 is critical", timeout=60)
        m = self.mav.recv_match(type='BATTERY_STATUS', blocking=True, timeout=1)
        if m.charge_state != mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_CRITICAL:
            raise NotAchievedException("Expected state critical")
        self.delay_sim_time(5)
        self.wait_mode("ALT_HOLD")
        self.change_mode("RTL")
        self.wait_rtl_complete()
        self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
        self.reboot_sitl()
        self.end_subtest("Completed Batt failsafe disabled test")

        # TWO STAGE BATTERY FAILSAFE: Trigger low battery condition,
        # then critical battery condition. Verify RTL and Land actions
        # complete.
        self.start_subtest("Two stage battery failsafe test with RTL and Land")
        self.takeoffAndMoveAway()
        self.delay_sim_time(3)
        self.set_parameters({
            'BATT_FS_LOW_ACT': 2,
            'BATT_FS_CRT_ACT': 1,
            'SIM_BATT_VOLTAGE': 11.4,
        })
        self.wait_statustext("Battery 1 is low", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("RTL")
        self.delay_sim_time(10)
        self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
        self.wait_statustext("Battery 1 is critical", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
        self.reboot_sitl()
        self.end_subtest("Completed two stage battery failsafe test with RTL and Land")

        # TWO STAGE BATTERY FAILSAFE: Trigger low battery condition,
        # then critical battery condition. Verify both SmartRTL
        # actions complete
        self.start_subtest("Two stage battery failsafe test with SmartRTL")
        self.takeoffAndMoveAway()
        self.set_parameter('BATT_FS_LOW_ACT', 3)
        self.set_parameter('BATT_FS_CRT_ACT', 4)
        self.delay_sim_time(10)
        self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
        self.wait_statustext("Battery 1 is low", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("SMART_RTL")
        self.change_mode("LOITER")
        self.delay_sim_time(10)
        self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
        self.wait_statustext("Battery 1 is critical", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("SMART_RTL")
        self.wait_disarmed()
        self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
        self.reboot_sitl()
        self.end_subtest("Completed two stage battery failsafe test with SmartRTL")

        # Trigger low battery condition in land mode with FS_OPTIONS
        # set to allow land mode to continue. Verify landing completes
        # uninterrupted.
        self.start_subtest("Battery failsafe with FS_OPTIONS set to continue landing")
        self.takeoffAndMoveAway()
        self.set_parameter('FS_OPTIONS', 8)
        self.change_mode("LAND")
        self.delay_sim_time(5)
        self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
        self.wait_statustext("Battery 1 is low", timeout=60)
        self.delay_sim_time(5)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
        self.reboot_sitl()
        self.end_subtest("Completed battery failsafe with FS_OPTIONS set to continue landing")

        # Trigger a critical battery condition, which triggers a land
        # mode failsafe. Trigger an RC failure. Verify the RC failsafe
        # is prevented from stopping the low battery landing.
        self.start_subtest("Battery failsafe critical landing")
        self.takeoffAndMoveAway(100, 50)
        self.set_parameters({
            'FS_OPTIONS': 0,
            'BATT_FS_LOW_ACT': 1,
            'BATT_FS_CRT_ACT': 1,
            'FS_THR_ENABLE': 1,
        })
        self.delay_sim_time(5)
        self.set_parameter('SIM_BATT_VOLTAGE', 10.0)
        self.wait_statustext("Battery 1 is critical", timeout=60)
        self.wait_mode("LAND")
        self.delay_sim_time(10)
        self.set_parameter("SIM_RC_FAIL", 1)
        self.delay_sim_time(10)
        self.wait_mode("LAND")
        self.wait_landed_and_disarmed()
        self.set_parameter('SIM_BATT_VOLTAGE', 12.5)
        self.set_parameter("SIM_RC_FAIL", 0)
        self.reboot_sitl()
        self.end_subtest("Completed battery failsafe critical landing")

        # Trigger low battery condition with failsafe set to terminate. Copter will disarm and crash.
        self.start_subtest("Battery failsafe terminate")
        self.takeoffAndMoveAway()
        self.set_parameter('BATT_FS_LOW_ACT', 5)
        self.delay_sim_time(10)
        self.set_parameter('SIM_BATT_VOLTAGE', 11.4)
        self.wait_statustext("Battery 1 is low", timeout=60)
        self.wait_disarmed()
        self.end_subtest("Completed terminate failsafe test")

        self.progress("All Battery failsafe tests complete")

    def VibrationFailsafe(self):
        '''Test Vibration Failsafe'''
        self.context_push()

        # takeoff in Loiter to 20m
        self.takeoff(20, mode="LOITER")

        # simulate accel bias caused by high vibration
        self.set_parameters({
            'SIM_ACC1_BIAS_Z': 2,
            'SIM_ACC2_BIAS_Z': 2,
            'SIM_ACC3_BIAS_Z': 2,
        })

        # wait for Vibration compensation warning and change to LAND mode
        self.wait_statustext("Vibration compensation ON", timeout=30)
        self.change_mode("LAND")

        # check vehicle descends to 2m or less within 40 seconds
        self.wait_altitude(-5, 2, timeout=40, relative=True)

        # force disarm of vehicle (it will likely not automatically disarm)
        self.disarm_vehicle(force=True)

        # revert simulated accel bias and reboot to restore EKF health
        self.context_pop()
        self.reboot_sitl()

    def test_takeoff_check_mode(self, mode, user_takeoff=False):
        # stabilize check
        self.progress("Motor takeoff check in %s" % mode)
        self.change_mode(mode)
        self.zero_throttle()
        self.wait_ready_to_arm()
        self.context_push()
        self.context_collect('STATUSTEXT')
        self.arm_vehicle()
        if user_takeoff:
            self.run_cmd(mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 0, 0, 0, 0, 10)
        else:
            self.set_rc(3, 1700)
        # we may never see ourselves as armed in a heartbeat
        self.wait_statustext("Takeoff blocked: ESC RPM out of range", check_context=True)
        self.context_pop()
        self.zero_throttle()
        self.disarm_vehicle()
        self.wait_disarmed()

    # Tests the motor failsafe
    def TakeoffCheck(self):
        '''Test takeoff check'''
        self.set_parameters({
            "AHRS_EKF_TYPE": 10,
            'SIM_ESC_TELEM': 1,
            'SIM_ESC_ARM_RPM': 500,
            'TKOFF_RPM_MIN': 1000,
        })

        self.test_takeoff_check_mode("STABILIZE")
        self.test_takeoff_check_mode("ACRO")
        self.test_takeoff_check_mode("LOITER")
        self.test_takeoff_check_mode("ALT_HOLD")
        # self.test_takeoff_check_mode("FLOWHOLD")
        self.test_takeoff_check_mode("GUIDED", True)
        self.test_takeoff_check_mode("POSHOLD")
        # self.test_takeoff_check_mode("SPORT")

        self.set_parameters({
            "AHRS_EKF_TYPE": 10,
            'SIM_ESC_TELEM': 1,
            'TKOFF_RPM_MIN': 1,
            'TKOFF_RPM_MAX': 3,
        })
        self.test_takeoff_check_mode("STABILIZE")
        self.test_takeoff_check_mode("ACRO")
        self.test_takeoff_check_mode("LOITER")
        self.test_takeoff_check_mode("ALT_HOLD")
        # self.test_takeoff_check_mode("FLOWHOLD")
        self.test_takeoff_check_mode("GUIDED", True)
        self.test_takeoff_check_mode("POSHOLD")
        # self.test_takeoff_check_mode("SPORT")

    def assert_dataflash_message_field_level_at(self,
                                                mtype,
                                                field,
                                                level,
                                                maintain=1,
                                                tolerance=0.05,
                                                timeout=30,
                                                condition=None,
                                                dfreader_start_timestamp=None,
                                                verbose=False):
        '''wait for EKF's accel bias to reach a level and maintain it'''

        if verbose:
            self.progress("current onboard log filepath: %s" % self.current_onboard_log_filepath())
        dfreader = self.dfreader_for_current_onboard_log()

        achieve_start = None
        current_value = None
        while True:
            m = dfreader.recv_match(type=mtype, condition=condition)
            if m is None:
                raise NotAchievedException("%s.%s did not maintain %f" %
                                           (mtype, field, level))
            if dfreader_start_timestamp is not None:
                if m.TimeUS < dfreader_start_timestamp:
                    continue
            if verbose:
                print("m=%s" % str(m))
            current_value = getattr(m, field)

            if abs(current_value - level) > tolerance:
                if achieve_start is not None:
                    self.progress("Achieve stop at %u" % m.TimeUS)
                    achieve_start = None
                continue

            dfreader_now = m.TimeUS
            if achieve_start is None:
                self.progress("Achieve start at %u (got=%f want=%f)" %
                              (dfreader_now, current_value, level))
                if maintain is None:
                    return
                achieve_start = m.TimeUS
                continue

            # we're achieving....
            if dfreader_now - achieve_start > maintain*1e6:
                return dfreader_now

    # Tests any EK3 accel bias is subtracted from the correct IMU data
    def EK3AccelBias(self):
        '''Test EK3 Accel Bias data'''
        self.context_push()

        self.start_test("Test zero bias")
        dfreader_tstart = self.assert_dataflash_message_field_level_at(
            "XKF2",
            "AZ",
            0.0,
            condition="XKF2.C==1",
        )

        # Add 2m/s/s bias to the second IMU
        self.set_parameters({
            'SIM_ACC2_BIAS_Z': 0.7,
        })

        self.start_subtest("Ensuring second core has bias")
        self.delay_sim_time(30)
        dfreader_tstart = self.assert_dataflash_message_field_level_at(
            "XKF2", "AZ", 0.7,
            condition="XKF2.C==1",
        )

        self.start_subtest("Ensuring earth frame is compensated")
        self.assert_dataflash_message_field_level_at(
            "RATE", "A", 0,
            maintain=1,
            tolerance=2,    # RATE.A is in cm/s/s
            dfreader_start_timestamp=dfreader_tstart,
        )

        # now switch the EKF to only using the second core:
        self.set_parameters({
            'SIM_ACC2_BIAS_Z': 0.0,
            "EK3_IMU_MASK": 0b10,
        })
        self.reboot_sitl()

        self.delay_sim_time(30)
        dfreader_tstart = self.assert_dataflash_message_field_level_at(
            "XKF2", "AZ", 0.0,
            condition="XKF2.C==0",
        )

        # Add 2m/s/s bias to the second IMU
        self.set_parameters({
            'SIM_ACC2_BIAS_Z': 0.7,
        })

        self.start_subtest("Ensuring first core now has bias")
        self.delay_sim_time(30)
        dfreader_tstart = self.assert_dataflash_message_field_level_at(
            "XKF2", "AZ", 0.7,
            condition="XKF2.C==0",
        )

        self.start_subtest("Ensuring earth frame is compensated")
        self.assert_dataflash_message_field_level_at(
            "RATE", "A", 0,
            maintain=1,
            tolerance=2,  # RATE.A is in cm/s/s
            dfreader_start_timestamp=dfreader_tstart,
            verbose=True,
        )

        # revert simulated accel bias and reboot to restore EKF health
        self.context_pop()
        self.reboot_sitl()

    # StabilityPatch - fly south, then hold loiter within 5m
    # position and altitude and reduce 1 motor to 60% efficiency
    def StabilityPatch(self,
                       holdtime=30,
                       maxaltchange=5,
                       maxdistchange=10):
        '''Fly stability patch'''
        self.takeoff(10, mode="LOITER")

        # first south
        self.progress("turn south")
        self.set_rc(4, 1580)
        self.wait_heading(180)
        self.set_rc(4, 1500)

        # fly west 80m
        self.set_rc(2, 1100)
        self.wait_distance(80)
        self.set_rc(2, 1500)

        # wait for copter to slow moving
        self.wait_groundspeed(0, 2)

        m = self.mav.recv_match(type='VFR_HUD', blocking=True)
        start_altitude = m.alt
        start = self.mav.location()
        tstart = self.get_sim_time()
        self.progress("Holding loiter at %u meters for %u seconds" %
                      (start_altitude, holdtime))

        # cut motor 1's to efficiency
        self.progress("Cutting motor 1 to 65% efficiency")
        self.set_parameter("SIM_ENGINE_MUL", 0.65)

        while self.get_sim_time_cached() < tstart + holdtime:
            m = self.mav.recv_match(type='VFR_HUD', blocking=True)
            pos = self.mav.location()
            delta = self.get_distance(start, pos)
            alt_delta = math.fabs(m.alt - start_altitude)
            self.progress("Loiter Dist: %.2fm, alt:%u" % (delta, m.alt))
            if alt_delta > maxaltchange:
                raise NotAchievedException(
                    "Loiter alt shifted %u meters (> limit %u)" %
                    (alt_delta, maxaltchange))
            if delta > maxdistchange:
                raise NotAchievedException(
                    ("Loiter shifted %u meters (> limit of %u)" %
                     (delta, maxdistchange)))

        # restore motor 1 to 100% efficiency
        self.set_parameter("SIM_ENGINE_MUL", 1.0)

        self.progress("Stability patch and Loiter OK for %us" % holdtime)

        self.progress("RTL after stab patch")
        self.do_RTL()

    def debug_arming_issue(self):
        while True:
            self.send_mavlink_arm_command()
            m = self.mav.recv_match(blocking=True, timeout=1)
            if m is None:
                continue
            if m.get_type() in ["STATUSTEXT", "COMMAND_ACK"]:
                print("Got: %s" % str(m))
            if self.mav.motors_armed():
                self.progress("Armed")
                return

    # fly_fence_test - fly east until you hit the horizontal circular fence
    avoid_behave_slide = 0

    def fly_fence_avoid_test_radius_check(self, timeout=180, avoid_behave=avoid_behave_slide):
        using_mode = "LOITER" # must be something which adjusts velocity!
        self.change_mode(using_mode)
        fence_radius = 15
        fence_margin = 3
        self.set_parameters({
            "FENCE_ENABLE": 1, # fence
            "FENCE_TYPE": 2, # circle
            "FENCE_RADIUS": fence_radius,
            "FENCE_MARGIN": fence_margin,
            "AVOID_ENABLE": 1,
            "AVOID_BEHAVE": avoid_behave,
            "RC10_OPTION": 40, # avoid-enable
        })
        self.wait_ready_to_arm()
        self.set_rc(10, 2000)
        home_distance = self.distance_to_home(use_cached_home=True)
        if home_distance > 5:
            raise PreconditionFailedException("Expected to be within 5m of home")
        self.zero_throttle()
        self.arm_vehicle()
        self.set_rc(3, 1700)
        self.wait_altitude(10, 100, relative=True)
        self.set_rc(3, 1500)
        self.set_rc(2, 1400)
        self.wait_distance_to_home(12, 20)
        tstart = self.get_sim_time()
        push_time = 70 # push against barrier for 60 seconds
        failed_max = False
        failed_min = False
        while True:
            if self.get_sim_time() - tstart > push_time:
                self.progress("Push time up")
                break
            # make sure we don't RTL:
            if not self.mode_is(using_mode):
                raise NotAchievedException("Changed mode away from %s" % using_mode)
            distance = self.distance_to_home(use_cached_home=True)
            inner_radius = fence_radius - fence_margin
            want_min = inner_radius - 1 # allow 1m either way
            want_max = inner_radius + 1 # allow 1m either way
            self.progress("Push: distance=%f %f<want<%f" %
                          (distance, want_min, want_max))
            if distance < want_min:
                if failed_min is False:
                    self.progress("Failed min")
                    failed_min = True
            if distance > want_max:
                if failed_max is False:
                    self.progress("Failed max")
                    failed_max = True
        if failed_min and failed_max:
            raise NotAchievedException("Failed both min and max checks.  Clever")
        if failed_min:
            raise NotAchievedException("Failed min")
        if failed_max:
            raise NotAchievedException("Failed max")
        self.set_rc(2, 1500)
        self.do_RTL()

    def HorizontalAvoidFence(self, timeout=180):
        '''Test horizontal Avoidance fence'''
        self.fly_fence_avoid_test_radius_check(avoid_behave=1, timeout=timeout)
        self.fly_fence_avoid_test_radius_check(avoid_behave=0, timeout=timeout)

    # fly_fence_test - fly east until you hit the horizontal circular fence
    def HorizontalFence(self, timeout=180):
        '''Test horizontal fence'''
        # enable fence, disable avoidance
        self.set_parameters({
            "FENCE_ENABLE": 1,
            "AVOID_ENABLE": 0,
        })

        self.change_mode("LOITER")
        self.wait_ready_to_arm()

        # fence requires home to be set:
        m = self.poll_home_position(quiet=False)

        self.start_subtest("ensure we can't arm if outside fence")
        self.load_fence("fence-in-middle-of-nowhere.txt")

        self.delay_sim_time(5) # let fence check run so it loads-from-eeprom
        self.assert_prearm_failure("vehicle outside fence")
        self.progress("Failed to arm outside fence (good!)")
        self.clear_fence()
        self.delay_sim_time(5) # let fence breach clear
        self.drain_mav()
        self.end_subtest("ensure we can't arm if outside fence")

        self.start_subtest("ensure we can't arm with bad radius")
        self.context_push()
        self.set_parameter("FENCE_RADIUS", -1)
        self.assert_prearm_failure("Invalid FENCE_RADIUS value")
        self.context_pop()
        self.progress("Failed to arm with bad radius")
        self.drain_mav()
        self.end_subtest("ensure we can't arm with bad radius")

        self.start_subtest("ensure we can't arm with bad alt")
        self.context_push()
        self.set_parameter("FENCE_ALT_MAX", -1)
        self.assert_prearm_failure("Invalid FENCE_ALT_MAX value")
        self.context_pop()
        self.progress("Failed to arm with bad altitude")
        self.end_subtest("ensure we can't arm with bad radius")

        self.start_subtest("Check breach-fence behaviour")
        self.set_parameter("FENCE_TYPE", 2)
        self.takeoff(10, mode="LOITER")

        # first east
        self.progress("turn east")
        self.set_rc(4, 1580)
        self.wait_heading(160, timeout=60)
        self.set_rc(4, 1500)

        fence_radius = self.get_parameter("FENCE_RADIUS")

        self.progress("flying forward (east) until we hit fence")
        pitching_forward = True
        self.set_rc(2, 1100)

        self.progress("Waiting for fence breach")
        tstart = self.get_sim_time()
        while not self.mode_is("RTL"):
            if self.get_sim_time_cached() - tstart > 30:
                raise NotAchievedException("Did not breach fence")

            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            alt = m.relative_alt / 1000.0 # mm -> m
            home_distance = self.distance_to_home(use_cached_home=True)
            self.progress("Alt: %.02f  HomeDistance: %.02f (fence radius=%f)" %
                          (alt, home_distance, fence_radius))

        self.progress("Waiting until we get home and disarm")
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < tstart + timeout:
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            alt = m.relative_alt / 1000.0 # mm -> m
            home_distance = self.distance_to_home(use_cached_home=True)
            self.progress("Alt: %.02f  HomeDistance: %.02f" %
                          (alt, home_distance))
            # recenter pitch sticks once we're home so we don't fly off again
            if pitching_forward and home_distance < 50:
                pitching_forward = False
                self.set_rc(2, 1475)
                # disable fence
                self.set_parameter("FENCE_ENABLE", 0)
            if (alt <= 1 and home_distance < 10) or (not self.armed() and home_distance < 10):
                # reduce throttle
                self.zero_throttle()
                self.change_mode("LAND")
                self.wait_landed_and_disarmed()
                self.progress("Reached home OK")
                self.zero_throttle()
                return

        # give we're testing RTL, doing one here probably doesn't make sense
        home_distance = self.distance_to_home(use_cached_home=True)
        raise AutoTestTimeoutException(
            "Fence test failed to reach home (%fm distance) - "
            "timed out after %u seconds" % (home_distance, timeout,))

    # MaxAltFence - fly up until you hit the fence ceiling
    def MaxAltFence(self):
        '''Test Max Alt Fence'''
        self.takeoff(10, mode="LOITER")
        """Hold loiter position."""

        # enable fence, disable avoidance
        self.set_parameters({
            "FENCE_ENABLE": 1,
            "AVOID_ENABLE": 0,
            "FENCE_TYPE": 1,
        })

        self.change_alt(10)

        # first east
        self.progress("turning east")
        self.set_rc(4, 1580)
        self.wait_heading(160, timeout=60)
        self.set_rc(4, 1500)

        self.progress("flying east 20m")
        self.set_rc(2, 1100)
        self.wait_distance(20)

        self.progress("flying up")
        self.set_rc_from_map({
            2: 1500,
            3: 1800,
        })

        # wait for fence to trigger
        self.wait_mode('RTL', timeout=120)

        self.wait_rtl_complete()

        self.zero_throttle()

    # fly_alt_min_fence_test - fly down until you hit the fence floor
    def MinAltFence(self):
        '''Test Min Alt Fence'''
        self.takeoff(30, mode="LOITER", timeout=60)

        # enable fence, disable avoidance
        self.set_parameters({
            "AVOID_ENABLE": 0,
            "FENCE_TYPE": 8,
            "FENCE_ALT_MIN": 20,
        })

        self.change_alt(30)

        # Activate the floor fence
        # TODO this test should run without requiring this
        self.do_fence_enable()

        # first east
        self.progress("turn east")
        self.set_rc(4, 1580)
        self.wait_heading(160, timeout=60)
        self.set_rc(4, 1500)

        # fly forward (east) at least 20m
        self.set_rc(2, 1100)
        self.wait_distance(20)

        # stop flying forward and start flying down:
        self.set_rc_from_map({
            2: 1500,
            3: 1200,
        })

        # wait for fence to trigger
        self.wait_mode('RTL', timeout=120)

        self.wait_rtl_complete()

        # Disable the fence using mavlink command to ensure cleaned up SITL state
        self.do_fence_disable()

        self.zero_throttle()

    def FenceFloorEnabledLanding(self):
        """Ensures we can initiate and complete an RTL while the fence is
        enabled.
        """
        fence_bit = mavutil.mavlink.MAV_SYS_STATUS_GEOFENCE

        self.progress("Test Landing while fence floor enabled")
        self.set_parameters({
            "AVOID_ENABLE": 0,
            "FENCE_TYPE": 15,
            "FENCE_ALT_MIN": 10,
            "FENCE_ALT_MAX": 20,
        })

        self.change_mode("GUIDED")
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.user_takeoff(alt_min=15)

        # Check fence is enabled
        self.do_fence_enable()
        self.assert_fence_enabled()

        # Change to RC controlled mode
        self.change_mode('LOITER')

        self.set_rc(3, 1800)

        self.wait_mode('RTL', timeout=120)
        self.wait_landed_and_disarmed()
        self.assert_fence_enabled()

        # Assert fence is not healthy
        self.assert_sensor_state(fence_bit, healthy=False)

        # Disable the fence using mavlink command to ensure cleaned up SITL state
        self.do_fence_disable()
        self.assert_fence_disabled()

    def GPSGlitchLoiter(self, timeout=30, max_distance=20):
        """fly_gps_glitch_loiter_test. Fly south east in loiter and test
        reaction to gps glitch."""
        self.takeoff(10, mode="LOITER")

        # turn on simulator display of gps and actual position
        if self.use_map:
            self.show_gps_and_sim_positions(True)

        # set-up gps glitch array
        glitch_lat = [0.0002996,
                      0.0006958,
                      0.0009431,
                      0.0009991,
                      0.0009444,
                      0.0007716,
                      0.0006221]
        glitch_lon = [0.0000717,
                      0.0000912,
                      0.0002761,
                      0.0002626,
                      0.0002807,
                      0.0002049,
                      0.0001304]
        glitch_num = len(glitch_lat)
        self.progress("GPS Glitches:")
        for i in range(1, glitch_num):
            self.progress("glitch %d %.7f %.7f" %
                          (i, glitch_lat[i], glitch_lon[i]))

        # turn south east
        self.progress("turn south east")
        self.set_rc(4, 1580)
        try:
            self.wait_heading(150)
            self.set_rc(4, 1500)
            # fly forward (south east) at least 60m
            self.set_rc(2, 1100)
            self.wait_distance(60)
            self.set_rc(2, 1500)
            # wait for copter to slow down
        except Exception as e:
            if self.use_map:
                self.show_gps_and_sim_positions(False)
            raise e

        # record time and position
        tstart = self.get_sim_time()
        tnow = tstart
        start_pos = self.sim_location()

        # initialise current glitch
        glitch_current = 0
        self.progress("Apply first glitch")
        self.set_parameters({
            "SIM_GPS_GLITCH_X": glitch_lat[glitch_current],
            "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current],
        })

        # record position for 30 seconds
        while tnow < tstart + timeout:
            tnow = self.get_sim_time_cached()
            desired_glitch_num = int((tnow - tstart) * 2.2)
            if desired_glitch_num > glitch_current and glitch_current != -1:
                glitch_current = desired_glitch_num
                # turn off glitching if we've reached the end of glitch list
                if glitch_current >= glitch_num:
                    glitch_current = -1
                    self.progress("Completed Glitches")
                    self.set_parameters({
                        "SIM_GPS_GLITCH_X": 0,
                        "SIM_GPS_GLITCH_Y": 0,
                    })
                else:
                    self.progress("Applying glitch %u" % glitch_current)
                    # move onto the next glitch
                    self.set_parameters({
                        "SIM_GPS_GLITCH_X": glitch_lat[glitch_current],
                        "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current],
                    })

            # start displaying distance moved after all glitches applied
            if glitch_current == -1:
                m = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                        blocking=True)
                alt = m.alt/1000.0 # mm -> m
                curr_pos = self.sim_location()
                moved_distance = self.get_distance(curr_pos, start_pos)
                self.progress("Alt: %.02f  Moved: %.0f" %
                              (alt, moved_distance))
                if moved_distance > max_distance:
                    raise NotAchievedException(
                        "Moved over %u meters, Failed!" % max_distance)
            else:
                self.drain_mav()

        # disable gps glitch
        if glitch_current != -1:
            self.set_parameters({
                "SIM_GPS_GLITCH_X": 0,
                "SIM_GPS_GLITCH_Y": 0,
            })
        if self.use_map:
            self.show_gps_and_sim_positions(False)

        self.progress("GPS glitch test passed!"
                      "  stayed within %u meters for %u seconds" %
                      (max_distance, timeout))
        self.do_RTL()
        # re-arming is problematic because the GPS is glitching!
        self.reboot_sitl()

    def GPSGlitchLoiter2(self):
        """test vehicle handles GPS glitch (aka EKF Reset) without twitching"""
        self.context_push()
        self.takeoff(10, mode="LOITER")

        # wait for vehicle to level
        self.wait_attitude(desroll=0, despitch=0, timeout=10, tolerance=1)

        # apply glitch
        self.set_parameter("SIM_GPS_GLITCH_X", 0.001)

        # check lean angles remain stable for 20 seconds
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() - tstart < 20:
            m = self.mav.recv_match(type='ATTITUDE', blocking=True)
            roll_deg = math.degrees(m.roll)
            pitch_deg = math.degrees(m.pitch)
            self.progress("checking att: roll=%f pitch=%f " % (roll_deg, pitch_deg))
            if abs(roll_deg) > 2 or abs(pitch_deg) > 2:
                raise NotAchievedException("fly_gps_glitch_loiter_test2 failed, roll or pitch moved during GPS glitch")

        # RTL, remove glitch and reboot sitl
        self.do_RTL()
        self.context_pop()
        self.reboot_sitl()

    def GPSGlitchAuto(self, timeout=180):
        '''fly mission and test reaction to gps glitch'''
        # set-up gps glitch array
        glitch_lat = [0.0002996,
                      0.0006958,
                      0.0009431,
                      0.0009991,
                      0.0009444,
                      0.0007716,
                      0.0006221]
        glitch_lon = [0.0000717,
                      0.0000912,
                      0.0002761,
                      0.0002626,
                      0.0002807,
                      0.0002049,
                      0.0001304]
        glitch_num = len(glitch_lat)
        self.progress("GPS Glitches:")
        for i in range(1, glitch_num):
            self.progress("glitch %d %.7f %.7f" %
                          (i, glitch_lat[i], glitch_lon[i]))

        # Fly mission #1
        self.progress("# Load copter_glitch_mission")
        # load the waypoint count
        num_wp = self.load_mission("copter_glitch_mission.txt", strict=False)
        if not num_wp:
            raise NotAchievedException("load copter_glitch_mission failed")

        # turn on simulator display of gps and actual position
        if self.use_map:
            self.show_gps_and_sim_positions(True)

        self.progress("test: Fly a mission from 1 to %u" % num_wp)
        self.set_current_waypoint(1)

        self.change_mode("STABILIZE")
        self.wait_ready_to_arm()
        self.zero_throttle()
        self.arm_vehicle()

        # switch into AUTO mode and raise throttle
        self.change_mode('AUTO')
        self.set_rc(3, 1500)

        # wait until 100m from home
        try:
            self.wait_distance(100, 5, 90)
        except Exception as e:
            if self.use_map:
                self.show_gps_and_sim_positions(False)
            raise e

        # record time and position
        tstart = self.get_sim_time()

        # initialise current glitch
        glitch_current = 0
        self.progress("Apply first glitch")
        self.set_parameters({
            "SIM_GPS_GLITCH_X": glitch_lat[glitch_current],
            "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current],
        })

        # record position for 30 seconds
        while glitch_current < glitch_num:
            tnow = self.get_sim_time()
            desired_glitch_num = int((tnow - tstart) * 2.2)
            if desired_glitch_num > glitch_current and glitch_current != -1:
                glitch_current = desired_glitch_num
                # apply next glitch
                if glitch_current < glitch_num:
                    self.progress("Applying glitch %u" % glitch_current)
                    self.set_parameters({
                        "SIM_GPS_GLITCH_X": glitch_lat[glitch_current],
                        "SIM_GPS_GLITCH_Y": glitch_lon[glitch_current],
                    })

        # turn off glitching
        self.progress("Completed Glitches")
        self.set_parameters({
            "SIM_GPS_GLITCH_X": 0,
            "SIM_GPS_GLITCH_Y": 0,
        })

        # continue with the mission
        self.wait_waypoint(0, num_wp-1, timeout=500)

        # wait for arrival back home
        self.wait_distance_to_home(0, 10, timeout=timeout)

        # turn off simulator display of gps and actual position
        if self.use_map:
            self.show_gps_and_sim_positions(False)

        self.progress("GPS Glitch test Auto completed: passed!")
        self.wait_disarmed()
        # re-arming is problematic because the GPS is glitching!
        self.reboot_sitl()

    #   fly_simple - assumes the simple bearing is initialised to be
    #   directly north flies a box with 100m west, 15 seconds north,
    #   50 seconds east, 15 seconds south
    def SimpleMode(self, side=50):
        '''Fly in SIMPLE mode'''
        self.takeoff(10, mode="LOITER")

        # set SIMPLE mode for all flight modes
        self.set_parameter("SIMPLE", 63)

        # switch to stabilize mode
        self.change_mode('STABILIZE')
        self.set_rc(3, 1545)

        # fly south 50m
        self.progress("# Flying south %u meters" % side)
        self.set_rc(1, 1300)
        self.wait_distance(side, 5, 60)
        self.set_rc(1, 1500)

        # fly west 8 seconds
        self.progress("# Flying west for 8 seconds")
        self.set_rc(2, 1300)
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < (tstart + 8):
            self.mav.recv_match(type='VFR_HUD', blocking=True)
        self.set_rc(2, 1500)

        # fly north 25 meters
        self.progress("# Flying north %u meters" % (side/2.0))
        self.set_rc(1, 1700)
        self.wait_distance(side/2, 5, 60)
        self.set_rc(1, 1500)

        # fly east 8 seconds
        self.progress("# Flying east for 8 seconds")
        self.set_rc(2, 1700)
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < (tstart + 8):
            self.mav.recv_match(type='VFR_HUD', blocking=True)
        self.set_rc(2, 1500)

        # hover in place
        self.hover()

        self.do_RTL(timeout=500)

    # fly_super_simple - flies a circle around home for 45 seconds
    def SuperSimpleCircle(self, timeout=45):
        '''Fly a circle in SUPER SIMPLE mode'''
        self.takeoff(10, mode="LOITER")

        # fly forward 20m
        self.progress("# Flying forward 20 meters")
        self.set_rc(2, 1300)
        self.wait_distance(20, 5, 60)
        self.set_rc(2, 1500)

        # set SUPER SIMPLE mode for all flight modes
        self.set_parameter("SUPER_SIMPLE", 63)

        # switch to stabilize mode
        self.change_mode("ALT_HOLD")
        self.set_rc(3, 1500)

        # start copter yawing slowly
        self.set_rc(4, 1550)

        # roll left for timeout seconds
        self.progress("# rolling left from pilot's POV for %u seconds"
                      % timeout)
        self.set_rc(1, 1300)
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < (tstart + timeout):
            self.mav.recv_match(type='VFR_HUD', blocking=True)

        # stop rolling and yawing
        self.set_rc(1, 1500)
        self.set_rc(4, 1500)

        # restore simple mode parameters to default
        self.set_parameter("SUPER_SIMPLE", 0)

        # hover in place
        self.hover()

        self.do_RTL()

    # fly_circle - flies a circle with 20m radius
    def ModeCircle(self, holdtime=36):
        '''Fly CIRCLE mode'''
        # the following should not be required.  But there appears to
        # be a physics failure in the simulation which is causing CI
        # to fall over a lot.  -pb 202007021209
        self.reboot_sitl()

        self.takeoff(10, mode="LOITER")

        # face west
        self.progress("turn west")
        self.set_rc(4, 1580)
        self.wait_heading(270)
        self.set_rc(4, 1500)

        # set CIRCLE radius
        self.set_parameter("CIRCLE_RADIUS", 3000)

        # fly forward (east) at least 100m
        self.set_rc(2, 1100)
        self.wait_distance(100)
        # return pitch stick back to middle
        self.set_rc(2, 1500)

        # set CIRCLE mode
        self.change_mode('CIRCLE')

        # wait
        m = self.mav.recv_match(type='VFR_HUD', blocking=True)
        start_altitude = m.alt
        tstart = self.get_sim_time()
        self.progress("Circle at %u meters for %u seconds" %
                      (start_altitude, holdtime))
        while self.get_sim_time_cached() < tstart + holdtime:
            m = self.mav.recv_match(type='VFR_HUD', blocking=True)
            self.progress("heading %d" % m.heading)

        self.progress("CIRCLE OK for %u seconds" % holdtime)

        self.do_RTL()

    def MagFail(self):
        '''test failover of compass in EKF'''
        # we want both EK2 and EK3
        self.set_parameters({
            "EK2_ENABLE": 1,
            "EK3_ENABLE": 1,
        })

        self.takeoff(10, mode="LOITER")

        self.change_mode('CIRCLE')

        self.delay_sim_time(20)

        self.context_collect("STATUSTEXT")

        self.progress("Failing first compass")
        self.set_parameter("SIM_MAG1_FAIL", 1)

        # we want for the message twice, one for EK2 and again for EK3
        self.wait_statustext("EKF2 IMU0 switching to compass 1", check_context=True)
        self.wait_statustext("EKF3 IMU0 switching to compass 1", check_context=True)
        self.progress("compass switch 1 OK")

        self.delay_sim_time(2)

        self.context_clear_collection("STATUSTEXT")

        self.progress("Failing 2nd compass")
        self.set_parameter("SIM_MAG2_FAIL", 1)

        self.wait_statustext("EKF2 IMU0 switching to compass 2", check_context=True)
        self.wait_statustext("EKF3 IMU0 switching to compass 2", check_context=True)

        self.progress("compass switch 2 OK")

        self.delay_sim_time(2)

        self.context_clear_collection("STATUSTEXT")

        self.progress("Failing 3rd compass")
        self.set_parameter("SIM_MAG3_FAIL", 1)
        self.delay_sim_time(2)
        self.set_parameter("SIM_MAG1_FAIL", 0)

        self.wait_statustext("EKF2 IMU0 switching to compass 0", check_context=True)
        self.wait_statustext("EKF3 IMU0 switching to compass 0", check_context=True)
        self.progress("compass switch 0 OK")

        self.do_RTL()

    def ModeFlip(self):
        '''Fly Flip Mode'''
        ex = None
        try:
            self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_ATTITUDE, 100)

            self.takeoff(20)
            self.hover()
            old_speedup = self.get_parameter("SIM_SPEEDUP")
            self.set_parameter('SIM_SPEEDUP', 1)
            self.progress("Flipping in roll")
            self.set_rc(1, 1700)
            self.send_cmd_do_set_mode('FLIP') # don't wait for success
            self.wait_attitude(despitch=0, desroll=45, tolerance=30)
            self.wait_attitude(despitch=0, desroll=90, tolerance=30)
            self.wait_attitude(despitch=0, desroll=-45, tolerance=30)
            self.progress("Waiting for level")
            self.set_rc(1, 1500) # can't change quickly enough!
            self.wait_attitude(despitch=0, desroll=0, tolerance=5)

            self.progress("Regaining altitude")
            self.change_mode('ALT_HOLD')
            self.wait_for_alt(20, max_err=40)

            self.progress("Flipping in pitch")
            self.set_rc(2, 1700)
            self.send_cmd_do_set_mode('FLIP') # don't wait for success
            self.wait_attitude(despitch=45, desroll=0, tolerance=30)
            # can't check roll here as it flips from 0 to -180..
            self.wait_attitude(despitch=90, tolerance=30)
            self.wait_attitude(despitch=-45, tolerance=30)
            self.progress("Waiting for level")
            self.set_rc(2, 1500) # can't change quickly enough!
            self.wait_attitude(despitch=0, desroll=0, tolerance=5)
            self.set_parameter('SIM_SPEEDUP', old_speedup)
            self.do_RTL()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_ATTITUDE, 0)
        if ex is not None:
            raise ex

    def configure_EKFs_to_use_optical_flow_instead_of_GPS(self):
        '''configure EKF to use optical flow instead of GPS'''
        ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
        if ahrs_ekf_type == 2:
            self.set_parameter("EK2_GPS_TYPE", 3)
        if ahrs_ekf_type == 3:
            self.set_parameters({
                "EK3_SRC1_POSXY": 0,
                "EK3_SRC1_VELXY": 5,
                "EK3_SRC1_VELZ": 0,
            })

    def OpticalFlow(self):
        '''test optical flow works'''

        self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, False, False, False, verbose=True)

        self.start_subtest("Make sure no crash if no rangefinder")
        self.set_parameter("SIM_FLOW_ENABLE", 1)
        self.set_parameter("FLOW_TYPE", 10)

        self.configure_EKFs_to_use_optical_flow_instead_of_GPS()

        self.reboot_sitl()

        self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW, True, True, True, verbose=True)

        self.change_mode('LOITER')
        self.delay_sim_time(5)
        self.wait_statustext("Need Position Estimate", timeout=300)

    def OpticalFlowLimits(self):
        '''test EKF navigation limiting'''
        ex = None
        self.context_push()
        try:

            self.set_parameter("SIM_FLOW_ENABLE", 1)
            self.set_parameter("FLOW_TYPE", 10)

            self.configure_EKFs_to_use_optical_flow_instead_of_GPS()

            self.set_analog_rangefinder_parameters()

            self.set_parameter("SIM_GPS_DISABLE", 1)
            self.set_parameter("SIM_TERRAIN", 0)

            self.reboot_sitl()

            # we can't takeoff in loiter as we need flow healthy
            self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800)
            self.change_mode('LOITER')

            # speed should be limited to <10m/s
            self.set_rc(2, 1000)

            tstart = self.get_sim_time()
            timeout = 60
            started_climb = False
            while self.get_sim_time_cached() - tstart < timeout:
                m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
                spd = math.sqrt(m.vx**2 + m.vy**2) * 0.01
                alt = m.relative_alt*0.001

                # calculate max speed from altitude above the ground
                margin = 2.0
                max_speed = alt * 1.5 + margin
                self.progress("%0.1f: Low Speed: %f (want <= %u) alt=%.1f" %
                              (self.get_sim_time_cached() - tstart,
                               spd,
                               max_speed, alt))
                if spd > max_speed:
                    raise NotAchievedException(("Speed should be limited by"
                                                "EKF optical flow limits"))

                # after 30 seconds start climbing
                if not started_climb and self.get_sim_time_cached() - tstart > 30:
                    started_climb = True
                    self.set_rc(3, 1900)
                    self.progress("Moving higher")

                # check altitude is not climbing above 35m
                if alt > 35:
                    raise NotAchievedException("Alt should be limited by EKF optical flow limits")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.set_rc(2, 1500)
        self.context_pop()
        self.reboot_sitl(force=True)

        if ex is not None:
            raise ex

    def OpticalFlowCalibration(self):
        '''test optical flow calibration'''
        ex = None
        self.context_push()
        try:

            self.set_parameter("SIM_FLOW_ENABLE", 1)
            self.set_parameter("FLOW_TYPE", 10)
            self.set_analog_rangefinder_parameters()

            # RC9 starts/stops calibration
            self.set_parameter("RC9_OPTION", 158)

            # initialise flow scaling parameters to incorrect values
            self.set_parameter("FLOW_FXSCALER", -200)
            self.set_parameter("FLOW_FYSCALER", 200)

            self.reboot_sitl()

            # ensure calibration is off
            self.set_rc(9, 1000)

            # takeoff to 10m in loiter
            self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720)

            # start calibration
            self.set_rc(9, 2000)

            tstart = self.get_sim_time()
            timeout = 90
            veh_dir_tstart = self.get_sim_time()
            veh_dir = 0
            while self.get_sim_time_cached() - tstart < timeout:
                # roll and pitch vehicle until samples collected
                # change direction of movement every 2 seconds
                if self.get_sim_time_cached() - veh_dir_tstart > 2:
                    veh_dir_tstart = self.get_sim_time()
                    veh_dir = veh_dir + 1
                    if veh_dir > 3:
                        veh_dir = 0
                if veh_dir == 0:
                    # move right
                    self.set_rc(1, 1800)
                    self.set_rc(2, 1500)
                if veh_dir == 1:
                    # move left
                    self.set_rc(1, 1200)
                    self.set_rc(2, 1500)
                if veh_dir == 2:
                    # move forward
                    self.set_rc(1, 1500)
                    self.set_rc(2, 1200)
                if veh_dir == 3:
                    # move back
                    self.set_rc(1, 1500)
                    self.set_rc(2, 1800)

            # return sticks to center
            self.set_rc(1, 1500)
            self.set_rc(2, 1500)

            # stop calibration (not actually necessary)
            self.set_rc(9, 1000)

            # check scaling parameters have been restored to values near zero
            flow_scalar_x = self.get_parameter("FLOW_FXSCALER")
            flow_scalar_y = self.get_parameter("FLOW_FYSCALER")
            if ((flow_scalar_x > 30) or (flow_scalar_x < -30)):
                raise NotAchievedException("FlowCal failed to set FLOW_FXSCALER correctly")
            if ((flow_scalar_y > 30) or (flow_scalar_y < -30)):
                raise NotAchievedException("FlowCal failed to set FLOW_FYSCALER correctly")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def AutoTune(self):
        """Test autotune mode"""

        rlld = self.get_parameter("ATC_RAT_RLL_D")
        rlli = self.get_parameter("ATC_RAT_RLL_I")
        rllp = self.get_parameter("ATC_RAT_RLL_P")
        self.set_parameter("ATC_RAT_RLL_SMAX", 1)
        self.takeoff(10)

        # hold position in loiter
        self.change_mode('AUTOTUNE')

        tstart = self.get_sim_time()
        sim_time_expected = 5000
        deadline = tstart + sim_time_expected
        while self.get_sim_time_cached() < deadline:
            now = self.get_sim_time_cached()
            m = self.mav.recv_match(type='STATUSTEXT',
                                    blocking=True,
                                    timeout=1)
            if m is None:
                continue
            self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
            if "AutoTune: Success" in m.text:
                self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
                # near enough for now:
                self.change_mode('LAND')
                self.wait_landed_and_disarmed()
                # check the original gains have been re-instated
                if (rlld != self.get_parameter("ATC_RAT_RLL_D") or
                        rlli != self.get_parameter("ATC_RAT_RLL_I") or
                        rllp != self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains still present")
                return

        raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
                                   (self.get_sim_time() - tstart))

    def AutoTuneYawD(self):
        """Test autotune mode"""

        rlld = self.get_parameter("ATC_RAT_RLL_D")
        rlli = self.get_parameter("ATC_RAT_RLL_I")
        rllp = self.get_parameter("ATC_RAT_RLL_P")
        self.set_parameter("ATC_RAT_RLL_SMAX", 1)
        self.set_parameter("AUTOTUNE_AXES", 15)
        self.takeoff(10)

        # hold position in loiter
        self.change_mode('AUTOTUNE')

        tstart = self.get_sim_time()
        sim_time_expected = 5000
        deadline = tstart + sim_time_expected
        while self.get_sim_time_cached() < deadline:
            now = self.get_sim_time_cached()
            m = self.mav.recv_match(type='STATUSTEXT',
                                    blocking=True,
                                    timeout=1)
            if m is None:
                continue
            self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
            if "AutoTune: Success" in m.text:
                self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
                # near enough for now:
                self.change_mode('LAND')
                self.wait_landed_and_disarmed()
                # check the original gains have been re-instated
                if (rlld != self.get_parameter("ATC_RAT_RLL_D") or
                        rlli != self.get_parameter("ATC_RAT_RLL_I") or
                        rllp != self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains still present")
                return

        raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
                                   (self.get_sim_time() - tstart))

    def AutoTuneSwitch(self):
        """Test autotune on a switch with gains being saved"""

        # autotune changes a set of parameters on the vehicle which
        # are not in our context.  That changes the flight
        # characterstics, which we can't afford between runs.  So
        # completely reset the simulated vehicle after the run is
        # complete by "customising" the commandline here:
        self.customise_SITL_commandline([])

        self.set_parameters({
            "RC8_OPTION": 17,
            "ATC_RAT_RLL_FLTT": 20,
        })
        rlld = self.get_parameter("ATC_RAT_RLL_D")
        rlli = self.get_parameter("ATC_RAT_RLL_I")
        rllp = self.get_parameter("ATC_RAT_RLL_P")
        rllt = self.get_parameter("ATC_RAT_RLL_FLTT")
        self.progress("AUTOTUNE pre-gains are P:%f I:%f D:%f" %
                      (self.get_parameter("ATC_RAT_RLL_P"),
                       self.get_parameter("ATC_RAT_RLL_I"),
                       self.get_parameter("ATC_RAT_RLL_D")))
        self.takeoff(10, mode='LOITER')

        # hold position in loiter and run autotune
        self.set_rc(8, 1850)
        self.wait_mode('AUTOTUNE')

        tstart = self.get_sim_time()
        sim_time_expected = 5000
        deadline = tstart + sim_time_expected
        while self.get_sim_time_cached() < deadline:
            now = self.get_sim_time_cached()
            m = self.mav.recv_match(type='STATUSTEXT',
                                    blocking=True,
                                    timeout=1)
            if m is None:
                continue
            self.progress("STATUSTEXT (%u<%u): %s" % (now, deadline, m.text))
            if "AutoTune: Success" in m.text:
                self.progress("AUTOTUNE OK (%u seconds)" % (now - tstart))
                # Check original gains are re-instated
                self.set_rc(8, 1100)
                self.delay_sim_time(1)
                self.progress("AUTOTUNE original gains are P:%f I:%f D:%f" %
                              (self.get_parameter("ATC_RAT_RLL_P"), self.get_parameter("ATC_RAT_RLL_I"),
                               self.get_parameter("ATC_RAT_RLL_D")))
                if (rlld != self.get_parameter("ATC_RAT_RLL_D") or
                        rlli != self.get_parameter("ATC_RAT_RLL_I") or
                        rllp != self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains still present")
                # Use autotuned gains
                self.set_rc(8, 1850)
                self.delay_sim_time(1)
                self.progress("AUTOTUNE testing gains are P:%f I:%f D:%f" %
                              (self.get_parameter("ATC_RAT_RLL_P"), self.get_parameter("ATC_RAT_RLL_I"),
                               self.get_parameter("ATC_RAT_RLL_D")))
                if (rlld == self.get_parameter("ATC_RAT_RLL_D") or
                        rlli == self.get_parameter("ATC_RAT_RLL_I") or
                        rllp == self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains not present in pilot testing")
                # land without changing mode
                self.set_rc(3, 1000)
                self.wait_for_alt(0)
                self.wait_disarmed()
                # Check gains are still there after disarm
                if (rlld == self.get_parameter("ATC_RAT_RLL_D") or
                        rlli == self.get_parameter("ATC_RAT_RLL_I") or
                        rllp == self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains not present on disarm")

                self.reboot_sitl()
                # Check gains are still there after reboot
                if (rlld == self.get_parameter("ATC_RAT_RLL_D") or
                        rlli == self.get_parameter("ATC_RAT_RLL_I") or
                        rllp == self.get_parameter("ATC_RAT_RLL_P")):
                    raise NotAchievedException("AUTOTUNE gains not present on reboot")
                # Check FLTT is unchanged
                if rllt != self.get_parameter("ATC_RAT_RLL_FLTT"):
                    raise NotAchievedException("AUTOTUNE FLTT was modified")
                return

        raise NotAchievedException("AUTOTUNE failed (%u seconds)" %
                                   (self.get_sim_time() - tstart))

    def EK3_RNG_USE_HGT(self):
        '''basic tests for using rangefinder when speed and height below thresholds'''
        # this takes advantage of some code in send_status_report
        # which only reports terrain variance when using switch-height
        # and using the rangefinder
        self.context_push()

        self.set_analog_rangefinder_parameters()
        # set use-height to 20m (the parameter is a percentage of max range)
        self.set_parameters({
            'EK3_RNG_USE_HGT': 200000 / self.get_parameter('RNGFND1_MAX_CM'),
        })
        self.reboot_sitl()

        # add a listener that verifies rangefinder innovations look good
        global alt
        alt = None

        def verify_innov(mav, m):
            global alt
            if m.get_type() == 'GLOBAL_POSITION_INT':
                alt = m.relative_alt * 0.001  # mm -> m
                return
            if m.get_type() != 'EKF_STATUS_REPORT':
                return
            if alt is None:
                return
            if alt > 1 and alt < 8:  # 8 is very low, but it takes a long time to start to use the rangefinder again
                zero_variance_wanted = False
            elif alt > 20:
                zero_variance_wanted = True
            else:
                return
            variance = m.terrain_alt_variance
            if zero_variance_wanted and variance > 0.00001:
                raise NotAchievedException("Wanted zero variance at height %f, got %f" % (alt, variance))
            elif not zero_variance_wanted and variance == 0:
                raise NotAchievedException("Wanted non-zero variance at alt=%f, got zero" % alt)

        self.install_message_hook_context(verify_innov)

        self.takeoff(50, mode='GUIDED')
        current_alt = self.mav.location().alt
        target_position = mavutil.location(
            -35.362938,
            149.165185,
            current_alt,
            0
        )

        self.fly_guided_move_to(target_position, timeout=300)

        self.change_mode('LAND')
        self.wait_disarmed()

        self.context_pop()

        self.reboot_sitl()

    def TerrainDBPreArm(self):
        '''test that pre-arm checks are working corrctly for terrain database'''
        self.context_push()

        self.progress("# Load msission with terrain alt")
        # load the waypoint
        num_wp = self.load_mission("terrain_wp.txt", strict=False)
        if not num_wp:
            raise NotAchievedException("load terrain_wp failed")

        self.set_analog_rangefinder_parameters()
        self.set_parameters({
            "WPNAV_RFND_USE": 1,
            "TERRAIN_ENABLE": 1,
        })
        self.reboot_sitl()
        self.wait_ready_to_arm()

        # make sure we can still arm with valid rangefinder and terrain db disabled
        self.set_parameter("TERRAIN_ENABLE", 0)
        self.wait_ready_to_arm()
        self.progress("# Vehicle armed with terrain db disabled")

        # make sure we can't arm with terrain db enabled and no rangefinder in us
        self.set_parameter("WPNAV_RFND_USE", 0)
        self.assert_prearm_failure("terrain disabled")

        self.context_pop()

        self.reboot_sitl()

    def CopterMission(self):
        '''fly mission which tests a significant number of commands'''
        # Fly mission #1
        self.progress("# Load copter_mission")
        # load the waypoint count
        num_wp = self.load_mission("copter_mission.txt", strict=False)
        if not num_wp:
            raise NotAchievedException("load copter_mission failed")

        self.fly_loaded_mission(num_wp)

        self.progress("Auto mission completed: passed!")

    def fly_loaded_mission(self, num_wp):
        '''fly mission loaded on vehicle.  FIXME: get num_wp from vehicle'''
        self.progress("test: Fly a mission from 1 to %u" % num_wp)
        self.set_current_waypoint(1)

        self.change_mode("LOITER")
        self.wait_ready_to_arm()
        self.arm_vehicle()

        # switch into AUTO mode and raise throttle
        self.change_mode("AUTO")
        self.set_rc(3, 1500)

        # fly the mission
        self.wait_waypoint(0, num_wp-1, timeout=500)

        # set throttle to minimum
        self.zero_throttle()

        # wait for disarm
        self.wait_disarmed()
        self.progress("MOTORS DISARMED OK")

    def CANGPSCopterMission(self):
        '''fly mission which tests normal operation alongside CAN GPS'''
        self.set_parameters({
            "CAN_P1_DRIVER": 1,
            "GPS_TYPE": 9,
            "GPS_TYPE2": 9,
            "SIM_GPS2_DISABLE": 0,
        })

        self.context_push()
        self.set_parameter("ARMING_CHECK", 1 << 3)
        self.context_collect('STATUSTEXT')

        self.reboot_sitl()
        # Test UAVCAN GPS ordering working
        gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True)
        gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True)
        gps1_nodeid = int(gps1_det_text.split('-')[1])
        gps2_nodeid = int(gps2_det_text.split('-')[1])
        if gps1_nodeid is None or gps2_nodeid is None:
            raise NotAchievedException("GPS not ordered per the order of Node IDs")

        self.context_stop_collecting('STATUSTEXT')

        GPS_Order_Tests = [[gps2_nodeid, gps2_nodeid, gps2_nodeid, 0,
                            "PreArm: Same Node Id {} set for multiple GPS".format(gps2_nodeid)],
                           [gps1_nodeid, int(gps2_nodeid/2), gps1_nodeid, 0,
                            "Selected GPS Node {} not set as instance {}".format(int(gps2_nodeid/2), 2)],
                           [int(gps1_nodeid/2), gps2_nodeid, 0, gps2_nodeid,
                            "Selected GPS Node {} not set as instance {}".format(int(gps1_nodeid/2), 1)],
                           [gps1_nodeid, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""],
                           [gps2_nodeid, gps1_nodeid, gps2_nodeid, gps1_nodeid, ""],
                           [gps1_nodeid, 0, gps1_nodeid, gps2_nodeid, ""],
                           [0, gps2_nodeid, gps1_nodeid, gps2_nodeid, ""]]
        for case in GPS_Order_Tests:
            self.progress("############################### Trying Case: " + str(case))
            self.set_parameters({
                "GPS1_CAN_OVRIDE": case[0],
                "GPS2_CAN_OVRIDE": case[1],
            })
            self.drain_mav()
            self.context_collect('STATUSTEXT')
            self.reboot_sitl()
            gps1_det_text = None
            gps2_det_text = None
            try:
                gps1_det_text = self.wait_text("GPS 1: specified as DroneCAN.*", regex=True, check_context=True)
            except AutoTestTimeoutException:
                pass
            try:
                gps2_det_text = self.wait_text("GPS 2: specified as DroneCAN.*", regex=True, check_context=True)
            except AutoTestTimeoutException:
                pass

            self.context_stop_collecting('STATUSTEXT')
            self.change_mode('LOITER')
            if case[2] == 0 and case[3] == 0:
                if gps1_det_text or gps2_det_text:
                    raise NotAchievedException("Failed ordering for requested CASE:", case)

            if case[2] == 0 or case[3] == 0:
                if bool(gps1_det_text is not None) == bool(gps2_det_text is not None):
                    print(gps1_det_text)
                    print(gps2_det_text)
                    raise NotAchievedException("Failed ordering for requested CASE:", case)

            if gps1_det_text:
                if case[2] != int(gps1_det_text.split('-')[1]):
                    raise NotAchievedException("Failed ordering for requested CASE:", case)
            if gps2_det_text:
                if case[3] != int(gps2_det_text.split('-')[1]):
                    raise NotAchievedException("Failed ordering for requested CASE:", case)
            if len(case[4]):
                self.context_collect('STATUSTEXT')
                self.run_cmd(mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
                             1,  # ARM
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             timeout=10,
                             want_result=mavutil.mavlink.MAV_RESULT_FAILED)
                self.wait_statustext(case[4], check_context=True)
                self.context_stop_collecting('STATUSTEXT')
        self.progress("############################### All GPS Order Cases Tests Passed")
        self.progress("############################### Test Healthy Prearm check")
        self.set_parameter("ARMING_CHECK", 1)
        self.stop_sup_program(instance=0)
        self.start_sup_program(instance=0, args="-M")
        self.delay_sim_time(2)
        self.context_collect('STATUSTEXT')
        self.run_cmd(mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
                     1,  # ARM
                     0,
                     0,
                     0,
                     0,
                     0,
                     0,
                     timeout=10,
                     want_result=mavutil.mavlink.MAV_RESULT_FAILED)
        self.wait_statustext("Node {} unhealthy".format(gps1_nodeid), check_context=True)
        self.stop_sup_program(instance=0)
        self.start_sup_program(instance=0)
        self.context_stop_collecting('STATUSTEXT')
        self.context_pop()
        self.CopterMission()

    def TakeoffAlt(self):
        '''Test Takeoff command altitude'''
        # Test case #1 (set target altitude to relative -10m from the ground, -10m is invalid, so it is set to 1m)
        self.progress("Testing relative alt from the ground")
        self.do_takeoff_alt("copter_takeoff.txt", 1, False)
        # Test case #2 (set target altitude to relative -10m during flight, -10m is invalid, so keeps current altitude)
        self.progress("Testing relative alt during flight")
        self.do_takeoff_alt("copter_takeoff.txt", 10, True)

        self.progress("Takeoff mission completed: passed!")

    def do_takeoff_alt(self, mission_file, target_alt, during_flight=False):
        self.progress("# Load %s" % mission_file)
        # load the waypoint count
        num_wp = self.load_mission(mission_file, strict=False)
        if not num_wp:
            raise NotAchievedException("load %s failed" % mission_file)

        self.set_current_waypoint(1)

        self.change_mode("GUIDED")
        self.wait_ready_to_arm()
        self.arm_vehicle()

        if during_flight:
            self.user_takeoff(alt_min=target_alt)

        # switch into AUTO mode and raise throttle
        self.change_mode("AUTO")
        self.set_rc(3, 1500)

        # fly the mission
        self.wait_waypoint(0, num_wp-1, timeout=500)

        # altitude check
        self.wait_altitude(target_alt - 1 , target_alt + 1, relative=True)

        self.change_mode('LAND')

        # set throttle to minimum
        self.zero_throttle()

        # wait for disarm
        self.wait_disarmed()
        self.progress("MOTORS DISARMED OK")

    def GuidedEKFLaneChange(self):
        '''test lane change with GPS diff on startup'''
        self.set_parameters({
            "EK3_SRC1_POSZ": 3,
            "EK3_AFFINITY" : 1,
            "GPS_TYPE2" : 1,
            "SIM_GPS2_DISABLE" : 0,
            "SIM_GPS2_GLTCH_Z" : -30
            })
        self.reboot_sitl()

        self.change_mode("GUIDED")
        self.wait_ready_to_arm()

        self.delay_sim_time(10, reason='"both EKF lanes to init"')

        self.set_parameters({
            "SIM_GPS2_GLTCH_Z" : 0
            })

        self.delay_sim_time(20, reason="EKF to do a position Z reset")

        self.arm_vehicle()
        self.user_takeoff(alt_min=20)
        gps_alt = self.get_altitude(altitude_source='GPS_RAW_INT.alt')
        self.progress("Initial guided alt=%.1fm" % gps_alt)

        self.context_collect('STATUSTEXT')
        self.progress("force a lane change")
        self.set_parameters({
            "INS_ACCOFFS_X" : 5
            })
        self.wait_statustext("EKF3 lane switch 1", timeout=10, check_context=True)

        self.watch_altitude_maintained(
            altitude_min=gps_alt-2,
            altitude_max=gps_alt+2,
            altitude_source='GPS_RAW_INT.alt',
            minimum_duration=10,
        )

        self.disarm_vehicle(force=True)
        self.reboot_sitl()

    def MotorFail(self, fail_servo=0, fail_mul=0.0, holdtime=30):
        """Test flight with reduced motor efficiency"""

        # we only expect an octocopter to survive ATM:
        servo_counts = {
            # 2: 6, # hexa
            3: 8,  # octa
            # 5: 6, # Y6
        }
        frame_class = int(self.get_parameter("FRAME_CLASS"))
        if frame_class not in servo_counts:
            self.progress("Test not relevant for frame_class %u" % frame_class)
            return

        servo_count = servo_counts[frame_class]

        if fail_servo < 0 or fail_servo > servo_count:
            raise ValueError('fail_servo outside range for frame class')

        self.takeoff(10, mode="LOITER")

        self.change_alt(alt_min=50)

        # Get initial values
        start_hud = self.mav.recv_match(type='VFR_HUD', blocking=True)
        start_attitude = self.mav.recv_match(type='ATTITUDE', blocking=True)

        hover_time = 5
        try:
            tstart = self.get_sim_time()
            int_error_alt = 0
            int_error_yaw_rate = 0
            int_error_yaw = 0
            self.progress("Hovering for %u seconds" % hover_time)
            failed = False
            while True:
                now = self.get_sim_time_cached()
                if now - tstart > holdtime + hover_time:
                    break

                servo = self.mav.recv_match(type='SERVO_OUTPUT_RAW',
                                            blocking=True)
                hud = self.mav.recv_match(type='VFR_HUD', blocking=True)
                attitude = self.mav.recv_match(type='ATTITUDE', blocking=True)

                if not failed and now - tstart > hover_time:
                    self.progress("Killing motor %u (%u%%)" %
                                  (fail_servo+1, fail_mul))
                    self.set_parameters({
                        "SIM_ENGINE_FAIL": fail_servo,
                        "SIM_ENGINE_MUL": fail_mul,
                    })
                    failed = True

                if failed:
                    self.progress("Hold Time: %f/%f" % (now-tstart, holdtime))

                servo_pwm = [servo.servo1_raw,
                             servo.servo2_raw,
                             servo.servo3_raw,
                             servo.servo4_raw,
                             servo.servo5_raw,
                             servo.servo6_raw,
                             servo.servo7_raw,
                             servo.servo8_raw]

                self.progress("PWM output per motor")
                for i, pwm in enumerate(servo_pwm[0:servo_count]):
                    if pwm > 1900:
                        state = "oversaturated"
                    elif pwm < 1200:
                        state = "undersaturated"
                    else:
                        state = "OK"

                    if failed and i == fail_servo:
                        state += " (failed)"

                    self.progress("servo %u [pwm=%u] [%s]" % (i+1, pwm, state))

                alt_delta = hud.alt - start_hud.alt
                yawrate_delta = attitude.yawspeed - start_attitude.yawspeed
                yaw_delta = attitude.yaw - start_attitude.yaw

                self.progress("Alt=%fm (delta=%fm)" % (hud.alt, alt_delta))
                self.progress("Yaw rate=%f (delta=%f) (rad/s)" %
                              (attitude.yawspeed, yawrate_delta))
                self.progress("Yaw=%f (delta=%f) (deg)" %
                              (attitude.yaw, yaw_delta))

                dt = self.get_sim_time() - now
                int_error_alt += abs(alt_delta/dt)
                int_error_yaw_rate += abs(yawrate_delta/dt)
                int_error_yaw += abs(yaw_delta/dt)
                self.progress("## Error Integration ##")
                self.progress("  Altitude: %fm" % int_error_alt)
                self.progress("  Yaw rate: %f rad/s" % int_error_yaw_rate)
                self.progress("  Yaw: %f deg" % int_error_yaw)
                self.progress("----")

                if int_error_yaw_rate > 0.1:
                    raise NotAchievedException("Vehicle is spinning")

                if alt_delta < -20:
                    raise NotAchievedException("Vehicle is descending")

            self.set_parameters({
                "SIM_ENGINE_FAIL": 0,
                "SIM_ENGINE_MUL": 1.0,
            })
        except Exception as e:
            self.set_parameters({
                "SIM_ENGINE_FAIL": 0,
                "SIM_ENGINE_MUL": 1.0,
            })
            raise e

        self.do_RTL()

    def hover_for_interval(self, hover_time):
        '''hovers for an interval of hover_time seconds.  Returns the bookend
        times for that interval (in time-since-boot frame), and the
        output throttle level at the end of the period.
        '''
        self.progress("Hovering for %u seconds" % hover_time)
        tstart = self.get_sim_time()
        self.delay_sim_time(hover_time, reason='data collection')
        vfr_hud = self.poll_message('VFR_HUD')
        tend = self.get_sim_time()
        return tstart, tend, vfr_hud.throttle

    def MotorVibration(self):
        """Test flight with motor vibration"""
        self.context_push()

        ex = None
        try:
            self.set_rc_default()
            # magic tridge EKF type that dramatically speeds up the test
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 0,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_VIB_MOT_MAX": 350,
                # these are real values taken from a 180mm Quad:
                "SIM_GYR1_RND": 20,
                "SIM_ACC1_RND": 5,
                "SIM_ACC2_RND": 5,
                "SIM_INS_THR_MIN": 0.1,
            })
            self.reboot_sitl()

            # do a simple up-and-down flight to gather data:
            self.takeoff(15, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(15)
            # if we don't reduce vibes here then the landing detector
            # may not trigger
            self.set_parameter("SIM_VIB_MOT_MAX", 0)
            self.do_RTL()

            psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
            # ignore the first 20Hz and look for a peak at -15dB or more
            ignore_bins = 20
            freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins]
            if numpy.amax(psd["X"][ignore_bins:]) < -15 or freq < 180 or freq > 300:
                raise NotAchievedException(
                    "Did not detect a motor peak, found %f at %f dB" %
                    (freq, numpy.amax(psd["X"][ignore_bins:])))
            else:
                self.progress("Detected motor peak at %fHz" % freq)

            # now add a notch and check that post-filter the peak is squashed below 40dB
            self.set_parameters({
                "INS_LOG_BAT_OPT": 2,
                "INS_HNTC2_ENABLE": 1,
                "INS_HNTC2_FREQ": freq,
                "INS_HNTC2_ATT": 50,
                "INS_HNTC2_BW": freq/2,
                "INS_HNTC2_MODE": 0,
                "SIM_VIB_MOT_MAX": 350,
            })
            self.reboot_sitl()

            # do a simple up-and-down flight to gather data:
            self.takeoff(15, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(15)
            self.set_parameter("SIM_VIB_MOT_MAX", 0)
            self.do_RTL()

            psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)
            freq = psd["F"][numpy.argmax(psd["X"][ignore_bins:]) + ignore_bins]
            peakdB = numpy.amax(psd["X"][ignore_bins:])
            if peakdB < -23:
                self.progress("Did not detect a motor peak, found %f at %f dB" % (freq, peakdB))
            else:
                raise NotAchievedException("Detected peak %.1f Hz %.2f dB" % (freq, peakdB))
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
            self.disarm_vehicle(force=True)

        self.context_pop()

        self.reboot_sitl()

        if ex is not None:
            raise ex

    def VisionPosition(self):
        """Disable GPS navigation, enable Vicon input."""
        # scribble down a location we can set origin to:

        self.customise_SITL_commandline(["--uartF=sim:vicon:"])
        self.progress("Waiting for location")
        self.change_mode('LOITER')
        self.wait_ready_to_arm()

        old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        print("old_pos=%s" % str(old_pos))

        self.context_push()

        ex = None
        try:
            # configure EKF to use external nav instead of GPS
            ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
            if ahrs_ekf_type == 2:
                self.set_parameter("EK2_GPS_TYPE", 3)
            if ahrs_ekf_type == 3:
                self.set_parameters({
                    "EK3_SRC1_POSXY": 6,
                    "EK3_SRC1_VELXY": 6,
                    "EK3_SRC1_POSZ": 6,
                    "EK3_SRC1_VELZ": 6,
                })
            self.set_parameters({
                "GPS_TYPE": 0,
                "VISO_TYPE": 1,
                "SERIAL5_PROTOCOL": 1,
            })
            self.reboot_sitl()
            # without a GPS or some sort of external prompting, AP
            # doesn't send system_time messages.  So prompt it:
            self.mav.mav.system_time_send(int(time.time() * 1000000), 0)
            self.progress("Waiting for non-zero-lat")
            tstart = self.get_sim_time()
            while True:
                self.mav.mav.set_gps_global_origin_send(1,
                                                        old_pos.lat,
                                                        old_pos.lon,
                                                        old_pos.alt)
                gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                          blocking=True)
                self.progress("gpi=%s" % str(gpi))
                if gpi.lat != 0:
                    break

                if self.get_sim_time_cached() - tstart > 60:
                    raise AutoTestTimeoutException("Did not get non-zero lat")

            self.takeoff()
            self.set_rc(1, 1600)
            tstart = self.get_sim_time()
            while True:
                vicon_pos = self.mav.recv_match(type='VISION_POSITION_ESTIMATE',
                                                blocking=True)
                # print("vpe=%s" % str(vicon_pos))
                self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                    blocking=True)
                # self.progress("gpi=%s" % str(gpi))
                if vicon_pos.x > 40:
                    break

                if self.get_sim_time_cached() - tstart > 100:
                    raise AutoTestTimeoutException("Vicon showed no movement")

            # recenter controls:
            self.set_rc(1, 1500)
            self.progress("# Enter RTL")
            self.change_mode('RTL')
            self.set_rc(3, 1500)
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time_cached() - tstart > 200:
                    raise NotAchievedException("Did not disarm")
                self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                    blocking=True)
                # print("gpi=%s" % str(gpi))
                self.mav.recv_match(type='SIMSTATE',
                                    blocking=True)
                # print("ss=%s" % str(ss))
                # wait for RTL disarm:
                if not self.armed():
                    break

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()
        self.zero_throttle()
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def BodyFrameOdom(self):
        """Disable GPS navigation, enable input of VISION_POSITION_DELTA."""

        if self.get_parameter("AHRS_EKF_TYPE") != 3:
            # only tested on this EKF
            return

        self.customise_SITL_commandline(["--uartF=sim:vicon:"])

        if self.current_onboard_log_contains_message("XKFD"):
            raise NotAchievedException("Found unexpected XKFD message")

        # scribble down a location we can set origin to:
        self.progress("Waiting for location")
        self.change_mode('LOITER')
        self.wait_ready_to_arm()

        old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        print("old_pos=%s" % str(old_pos))

        # configure EKF to use external nav instead of GPS
        self.set_parameters({
            "EK3_SRC1_POSXY": 6,
            "EK3_SRC1_VELXY": 6,
            "EK3_SRC1_POSZ": 6,
            "EK3_SRC1_VELZ": 6,
            "GPS_TYPE": 0,
            "VISO_TYPE": 1,
            "SERIAL5_PROTOCOL": 1,
            "SIM_VICON_TMASK": 8,  # send VISION_POSITION_DELTA
        })
        self.reboot_sitl()
        # without a GPS or some sort of external prompting, AP
        # doesn't send system_time messages.  So prompt it:
        self.mav.mav.system_time_send(int(time.time() * 1000000), 0)
        self.progress("Waiting for non-zero-lat")
        tstart = self.get_sim_time()
        while True:
            self.mav.mav.set_gps_global_origin_send(1,
                                                    old_pos.lat,
                                                    old_pos.lon,
                                                    old_pos.alt)
            gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                      blocking=True)
            self.progress("gpi=%s" % str(gpi))
            if gpi.lat != 0:
                break

            if self.get_sim_time_cached() - tstart > 60:
                raise AutoTestTimeoutException("Did not get non-zero lat")

        self.takeoff(alt_min=5, mode='ALT_HOLD', require_absolute=False, takeoff_throttle=1800)
        self.change_mode('LAND')
        # TODO: something more elaborate here - EKF will only aid
        # relative position
        self.wait_disarmed()
        if not self.current_onboard_log_contains_message("XKFD"):
            raise NotAchievedException("Did not find expected XKFD message")

    def FlyMissionTwice(self):
        '''fly a mission twice in a row without changing modes in between.
        Seeks to show bugs in mission state machine'''

        self.upload_simple_relhome_mission([
            (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, 20),
            (mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 20, 0, 20),
            (mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0),
        ])

        num_wp = self.get_mission_count()
        self.set_parameter("AUTO_OPTIONS", 3)
        self.change_mode('AUTO')
        self.wait_ready_to_arm()
        for i in 1, 2:
            self.progress("run %u" % i)
            self.arm_vehicle()
            self.wait_waypoint(num_wp-1, num_wp-1)
            self.wait_disarmed()
            self.delay_sim_time(20)

    def GPSViconSwitching(self):
        """Fly GPS and Vicon switching test"""
        self.customise_SITL_commandline(["--uartF=sim:vicon:"])

        """Setup parameters including switching to EKF3"""
        self.context_push()
        ex = None
        try:
            self.set_parameters({
                "VISO_TYPE": 2,      # enable vicon
                "SERIAL5_PROTOCOL": 2,
                "EK3_ENABLE": 1,
                "EK3_SRC2_POSXY": 6, # External Nav
                "EK3_SRC2_POSZ": 6,  # External Nav
                "EK3_SRC2_VELXY": 6, # External Nav
                "EK3_SRC2_VELZ": 6,  # External Nav
                "EK3_SRC2_YAW": 6,   # External Nav
                "RC7_OPTION": 80,    # RC aux switch 7 set to Viso Align
                "RC8_OPTION": 90,    # RC aux switch 8 set to EKF source selector
                "EK2_ENABLE": 0,
                "AHRS_EKF_TYPE": 3,
            })
            self.reboot_sitl()

            # switch to use GPS
            self.set_rc(8, 1000)

            # ensure we can get a global position:
            self.poll_home_position(timeout=120)

            # record starting position
            old_pos = self.get_global_position_int()
            print("old_pos=%s" % str(old_pos))

            # align vicon yaw with ahrs heading
            self.set_rc(7, 2000)

            # takeoff to 10m in Loiter
            self.progress("Moving to ensure location is tracked")
            self.takeoff(10, mode="LOITER", require_absolute=True, timeout=720)

            # fly forward in Loiter
            self.set_rc(2, 1300)

            # disable vicon
            self.set_parameter("SIM_VICON_FAIL", 1)

            # ensure vehicle remain in Loiter for 15 seconds
            tstart = self.get_sim_time()
            while self.get_sim_time() - tstart < 15:
                if not self.mode_is('LOITER'):
                    raise NotAchievedException("Expected to stay in loiter for >15 seconds")

            # re-enable vicon
            self.set_parameter("SIM_VICON_FAIL", 0)

            # switch to vicon, disable GPS and wait 10sec to ensure vehicle remains in Loiter
            self.set_rc(8, 1500)
            self.set_parameter("GPS_TYPE", 0)

            # ensure vehicle remain in Loiter for 15 seconds
            tstart = self.get_sim_time()
            while self.get_sim_time() - tstart < 15:
                if not self.mode_is('LOITER'):
                    raise NotAchievedException("Expected to stay in loiter for >15 seconds")

            # RTL and check vehicle arrives within 10m of home
            self.set_rc(2, 1500)
            self.do_RTL()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def RTLSpeed(self):
        """Test RTL Speed parameters"""
        rtl_speed_ms = 7
        wpnav_speed_ms = 4
        wpnav_accel_mss = 3
        tolerance = 0.5
        self.load_mission("copter_rtl_speed.txt")
        self.set_parameters({
            'WPNAV_ACCEL': wpnav_accel_mss * 100,
            'RTL_SPEED': rtl_speed_ms * 100,
            'WPNAV_SPEED': wpnav_speed_ms * 100,
        })
        self.change_mode('LOITER')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.change_mode('AUTO')
        self.set_rc(3, 1600)
        self.wait_altitude(19, 25, relative=True)
        self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance)
        self.monitor_groundspeed(wpnav_speed_ms, timeout=20)
        self.change_mode('RTL')
        self.wait_groundspeed(rtl_speed_ms-tolerance, rtl_speed_ms+tolerance)
        self.monitor_groundspeed(rtl_speed_ms, timeout=5)
        self.change_mode('AUTO')
        self.wait_groundspeed(0-tolerance, 0+tolerance)
        self.wait_groundspeed(wpnav_speed_ms-tolerance, wpnav_speed_ms+tolerance)
        self.monitor_groundspeed(wpnav_speed_ms, tolerance=0.6, timeout=5)
        self.do_RTL()

    def NavDelay(self):
        """Fly a simple mission that has a delay in it."""

        self.load_mission("copter_nav_delay.txt")

        self.set_parameter("DISARM_DELAY", 0)

        self.change_mode("LOITER")
        self.wait_ready_to_arm()

        self.arm_vehicle()
        self.change_mode("AUTO")
        self.set_rc(3, 1600)
        count_start = -1
        count_stop = -1
        tstart = self.get_sim_time()
        last_mission_current_msg = 0
        last_seq = None
        while self.armed(): # we RTL at end of mission
            now = self.get_sim_time_cached()
            if now - tstart > 200:
                raise AutoTestTimeoutException("Did not disarm as expected")
            m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
            at_delay_item = ""
            if m.seq == 3:
                at_delay_item = "(At delay item)"
                if count_start == -1:
                    count_start = now
            if ((now - last_mission_current_msg) > 1 or m.seq != last_seq):
                dist = None
                x = self.mav.messages.get("NAV_CONTROLLER_OUTPUT", None)
                if x is not None:
                    dist = x.wp_dist
                    self.progress("MISSION_CURRENT.seq=%u dist=%s %s" %
                                  (m.seq, dist, at_delay_item))
                last_mission_current_msg = self.get_sim_time_cached()
                last_seq = m.seq
            if m.seq > 3:
                if count_stop == -1:
                    count_stop = now
        calculated_delay = count_stop - count_start
        want_delay = 59 # should reflect what's in the mission file
        self.progress("Stopped for %u seconds (want >=%u seconds)" %
                      (calculated_delay, want_delay))
        if calculated_delay < want_delay:
            raise NotAchievedException("Did not delay for long enough")

    def RangeFinder(self):
        '''Test RangeFinder Basic Functionality'''
        ex = None
        self.context_push()

        self.progress("Making sure we don't ordinarily get RANGEFINDER")
        m = self.mav.recv_match(type='RANGEFINDER',
                                blocking=True,
                                timeout=5)

        if m is not None:
            raise NotAchievedException("Received unexpected RANGEFINDER msg")

        # may need to force a rotation if some other test has used the
        # rangefinder...
        self.progress("Ensure no RFND messages in log")
        self.set_parameter("LOG_DISARMED", 1)
        if self.current_onboard_log_contains_message("RFND"):
            raise NotAchievedException("Found unexpected RFND message")

        try:
            self.set_analog_rangefinder_parameters()
            self.set_parameter("RC9_OPTION", 10) # rangefinder
            self.set_rc(9, 2000)

            self.reboot_sitl()

            self.progress("Making sure we now get RANGEFINDER messages")
            m = self.assert_receive_message('RANGEFINDER', timeout=10)

            self.progress("Checking RangeFinder is marked as enabled in mavlink")
            m = self.mav.recv_match(type='SYS_STATUS',
                                    blocking=True,
                                    timeout=10)
            flags = m.onboard_control_sensors_enabled
            if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
                raise NotAchievedException("Laser not enabled in SYS_STATUS")
            self.progress("Disabling laser using switch")
            self.set_rc(9, 1000)
            self.delay_sim_time(1)
            self.progress("Checking RangeFinder is marked as disabled in mavlink")
            m = self.mav.recv_match(type='SYS_STATUS',
                                    blocking=True,
                                    timeout=10)
            flags = m.onboard_control_sensors_enabled
            if flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
                raise NotAchievedException("Laser enabled in SYS_STATUS")

            self.progress("Re-enabling rangefinder")
            self.set_rc(9, 2000)
            self.delay_sim_time(1)
            m = self.mav.recv_match(type='SYS_STATUS',
                                    blocking=True,
                                    timeout=10)
            flags = m.onboard_control_sensors_enabled
            if not flags & mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION:
                raise NotAchievedException("Laser not enabled in SYS_STATUS")

            self.takeoff(10, mode="LOITER")

            m_r = self.mav.recv_match(type='RANGEFINDER',
                                      blocking=True)
            m_p = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                      blocking=True)

            if abs(m_r.distance - m_p.relative_alt/1000) > 1:
                raise NotAchievedException(
                    "rangefinder/global position int mismatch %0.2f vs %0.2f" %
                    (m_r.distance, m_p.relative_alt/1000))

            self.land_and_disarm()

            if not self.current_onboard_log_contains_message("RFND"):
                raise NotAchievedException("Did not see expected RFND message")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def SplineTerrain(self):
        '''Test Splines and Terrain'''
        self.set_parameter("TERRAIN_ENABLE", 0)
        self.fly_mission("wp.txt")

    def WPNAV_SPEED(self):
        '''ensure resetting WPNAV_SPEED during a mission works'''

        loc = self.poll_home_position()
        alt = 20
        loc.alt = alt
        items = []

        # 100 waypoints in a line, 10m apart in a northerly direction
        #        for i in range(1, 100):
        #            items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, i*10, 0, alt))

        # 1 waypoint a long way away
        items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 2000, 0, alt),)

        items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))

        self.upload_simple_relhome_mission(items)

        start_speed_ms = self.get_parameter('WPNAV_SPEED') / 100.0

        self.takeoff(20)
        self.change_mode('AUTO')
        self.wait_groundspeed(start_speed_ms-1, start_speed_ms+1, minimum_duration=10)

        for speed_ms in 7, 8, 7, 8, 9, 10, 11, 7:
            self.set_parameter('WPNAV_SPEED', speed_ms*100)
            self.wait_groundspeed(speed_ms-1, speed_ms+1, minimum_duration=10)
        self.do_RTL()

    def WPNAV_SPEED_UP(self):
        '''Change speed (up) during mission'''

        items = []

        # 1 waypoint a long way up
        items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 20000),)

        items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))

        self.upload_simple_relhome_mission(items)

        start_speed_ms = self.get_parameter('WPNAV_SPEED_UP') / 100.0

        minimum_duration = 5

        self.takeoff(20)
        self.change_mode('AUTO')
        self.wait_climbrate(start_speed_ms-1, start_speed_ms+1, minimum_duration=minimum_duration)

        for speed_ms in 7, 8, 7, 8, 6, 2:
            self.set_parameter('WPNAV_SPEED_UP', speed_ms*100)
            self.wait_climbrate(speed_ms-1, speed_ms+1, minimum_duration=minimum_duration)
        self.do_RTL(timeout=240)

    def WPNAV_SPEED_DN(self):
        '''Change speed (down) during mission'''

        items = []

        # 1 waypoint a long way back down
        items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, 0, 0, 10),)

        items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))

        self.upload_simple_relhome_mission(items)

        minimum_duration = 5

        self.takeoff(500, timeout=60)
        self.change_mode('AUTO')

        start_speed_ms = self.get_parameter('WPNAV_SPEED_DN') / 100.0
        self.wait_climbrate(-start_speed_ms-1, -start_speed_ms+1, minimum_duration=minimum_duration)

        for speed_ms in 7, 8, 7, 8, 6, 2:
            self.set_parameter('WPNAV_SPEED_DN', speed_ms*100)
            self.wait_climbrate(-speed_ms-1, -speed_ms+1, minimum_duration=minimum_duration)
        self.do_RTL()

    def fly_mission(self, filename, strict=True):
        num_wp = self.load_mission(filename, strict=strict)
        self.set_parameter("AUTO_OPTIONS", 3)
        self.change_mode('AUTO')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.wait_waypoint(num_wp-1, num_wp-1)
        self.wait_disarmed()

    def SurfaceTracking(self):
        '''Test Surface Tracking'''
        ex = None
        self.context_push()

        self.install_terrain_handlers_context()

        try:
            self.set_analog_rangefinder_parameters()
            self.set_parameter("RC9_OPTION", 10) # rangefinder
            self.set_rc(9, 2000)

            self.reboot_sitl() # needed for both rangefinder and initial position
            self.assert_vehicle_location_is_at_startup_location()

            self.takeoff(10, mode="LOITER")
            lower_surface_pos = mavutil.location(-35.362421, 149.164534, 584, 270)
            here = self.mav.location()
            bearing = self.get_bearing(here, lower_surface_pos)

            self.change_mode("GUIDED")
            self.guided_achieve_heading(bearing)
            self.change_mode("LOITER")
            self.delay_sim_time(2)
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            orig_absolute_alt_mm = m.alt

            self.progress("Original alt: absolute=%f" % orig_absolute_alt_mm)

            self.progress("Flying somewhere which surface is known lower compared to takeoff point")
            self.set_rc(2, 1450)
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time() - tstart > 200:
                    raise NotAchievedException("Did not reach lower point")
                m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
                x = mavutil.location(m.lat/1e7, m.lon/1e7, m.alt/1e3, 0)
                dist = self.get_distance(x, lower_surface_pos)
                delta = (orig_absolute_alt_mm - m.alt)/1000.0

                self.progress("Distance: %fm abs-alt-delta: %fm" %
                              (dist, delta))
                if dist < 15:
                    if delta < 0.8:
                        raise NotAchievedException("Did not dip in altitude as expected")
                    break

            self.set_rc(2, 1500)
            self.do_RTL()

        except Exception as e:
            self.print_exception_caught(e)
            self.disarm_vehicle(force=True)
            ex = e

        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def test_rangefinder_switchover(self):
        """test that the EKF correctly handles the switchover between baro and rangefinder"""
        ex = None
        self.context_push()

        try:
            self.set_analog_rangefinder_parameters()

            self.set_parameters({
                "RNGFND1_MAX_CM": 1500
            })

            # configure EKF to use rangefinder for altitude at low altitudes
            ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
            if ahrs_ekf_type == 2:
                self.set_parameter("EK2_RNG_USE_HGT", 70)
            if ahrs_ekf_type == 3:
                self.set_parameter("EK3_RNG_USE_HGT", 70)

            self.reboot_sitl() # needed for both rangefinder and initial position
            self.assert_vehicle_location_is_at_startup_location()

            self.change_mode("LOITER")
            self.wait_ready_to_arm()
            self.arm_vehicle()
            self.set_rc(3, 1800)
            self.set_rc(2, 1200)
            # wait till we get to 50m
            self.wait_altitude(50, 52, True, 60)

            self.change_mode("RTL")
            # wait till we get to 25m
            self.wait_altitude(25, 27, True, 120)

            # level up
            self.set_rc(2, 1500)
            self.wait_altitude(14, 15, relative=True)

            self.wait_rtl_complete()

        except Exception as e:
            self.print_exception_caught(e)
            self.disarm_vehicle(force=True)
            ex = e
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def Parachute(self):
        '''Test Parachute Functionality'''
        self.set_rc(9, 1000)
        self.set_parameters({
            "CHUTE_ENABLED": 1,
            "CHUTE_TYPE": 10,
            "SERVO9_FUNCTION": 27,
            "SIM_PARA_ENABLE": 1,
            "SIM_PARA_PIN": 9,
        })

        self.progress("Test triggering parachute in mission")
        self.load_mission("copter_parachute_mission.txt")
        self.change_mode('LOITER')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.change_mode('AUTO')
        self.set_rc(3, 1600)
        self.wait_statustext('BANG', timeout=60)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        self.progress("Test triggering with mavlink message")
        self.takeoff(20)
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     2, # release
                     0,
                     0,
                     0,
                     0,
                     0,
                     0)
        self.wait_statustext('BANG', timeout=60)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        self.progress("Testing three-position switch")
        self.set_parameter("RC9_OPTION", 23) # parachute 3pos

        self.progress("Test manual triggering")
        self.takeoff(20)
        self.set_rc(9, 2000)
        self.wait_statustext('BANG', timeout=60)
        self.set_rc(9, 1000)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        self.progress("Test mavlink triggering")
        self.takeoff(20)
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     mavutil.mavlink.PARACHUTE_DISABLE, # param1
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     0 # param7
                     )
        ok = False
        try:
            self.wait_statustext('BANG', timeout=2)
        except AutoTestTimeoutException:
            ok = True
        if not ok:
            raise NotAchievedException("Disabled parachute fired")
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     mavutil.mavlink.PARACHUTE_ENABLE, # param1
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     0 # param7
                     )
        ok = False
        try:
            self.wait_statustext('BANG', timeout=2)
        except AutoTestTimeoutException:
            ok = True
        if not ok:
            raise NotAchievedException("Enabled parachute fired")

        self.set_rc(9, 1000)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        # parachute should not fire if you go from disabled to release:
        self.takeoff(20)
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     mavutil.mavlink.PARACHUTE_RELEASE,
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     0 # param7
                     )
        ok = False
        try:
            self.wait_statustext('BANG', timeout=2)
        except AutoTestTimeoutException:
            ok = True
        if not ok:
            raise NotAchievedException("Parachute fired when going straight from disabled to release")

        # now enable then release parachute:
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     mavutil.mavlink.PARACHUTE_ENABLE, # param1
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     0 # param7
                     )
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_PARACHUTE,
                     mavutil.mavlink.PARACHUTE_RELEASE,
                     0, # param2
                     0, # param3
                     0, # param4
                     0, # param5
                     0, # param6
                     0 # param7
                     )
        self.wait_statustext('BANG! Parachute deployed', timeout=2)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

        self.context_push()
        self.progress("Crashing with 3pos switch in enable position")
        self.takeoff(40)
        self.set_rc(9, 1500)
        self.set_parameters({
            "SIM_ENGINE_MUL": 0,
            "SIM_ENGINE_FAIL": 1,
        })
        self.wait_statustext('BANG! Parachute deployed', timeout=60)
        self.set_rc(9, 1000)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        self.context_pop()

        self.progress("Crashing with 3pos switch in disable position")
        loiter_alt = 10
        self.takeoff(loiter_alt, mode='LOITER')
        self.set_rc(9, 1100)
        self.set_parameters({
            "SIM_ENGINE_MUL": 0,
            "SIM_ENGINE_FAIL": 1,
        })
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < tstart + 5:
            m = self.mav.recv_match(type='STATUSTEXT', blocking=True, timeout=1)
            if m is None:
                continue
            if "BANG" in m.text:
                self.set_rc(9, 1000)
                self.reboot_sitl()
                raise NotAchievedException("Parachute deployed when disabled")
        self.set_rc(9, 1000)
        self.disarm_vehicle(force=True)
        self.reboot_sitl()

    def MotorTest(self, timeout=60):
        '''Run Motor Tests'''
        self.start_subtest("Testing PWM output")
        pwm_in = 1300
        # default frame is "+" - start motor of 2 is "B", which is
        # motor 1... see
        # https://ardupilot.org/copter/docs/connect-escs-and-motors.html
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_MOTOR_TEST,
                     2, # start motor
                     mavutil.mavlink.MOTOR_TEST_THROTTLE_PWM,
                     pwm_in, # pwm-to-output
                     2, # timeout in seconds
                     2, # number of motors to output
                     0, # compass learning
                     0,
                     timeout=timeout)
        # long timeouts here because there's a pause before we start motors
        self.wait_servo_channel_value(1, pwm_in, timeout=10)
        self.wait_servo_channel_value(4, pwm_in, timeout=10)
        self.wait_statustext("finished motor test")
        self.end_subtest("Testing PWM output")

        self.start_subtest("Testing percentage output")
        percentage = 90.1
        # since MOT_SPIN_MIN and MOT_SPIN_MAX are not set, the RC3
        # min/max are used.
        expected_pwm = 1000 + (self.get_parameter("RC3_MAX") - self.get_parameter("RC3_MIN")) * percentage/100.0
        self.progress("expected pwm=%f" % expected_pwm)
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_MOTOR_TEST,
                     2, # start motor
                     mavutil.mavlink.MOTOR_TEST_THROTTLE_PERCENT,
                     percentage, # pwm-to-output
                     2, # timeout in seconds
                     2, # number of motors to output
                     0, # compass learning
                     0,
                     timeout=timeout)
        self.wait_servo_channel_value(1, expected_pwm, timeout=10)
        self.wait_servo_channel_value(4, expected_pwm, timeout=10)
        self.wait_statustext("finished motor test")
        self.end_subtest("Testing percentage output")

    def PrecisionLanding(self):
        """Use PrecLand backends precision messages to land aircraft."""

        self.context_push()

        for backend in [4, 2]:  # SITL, SITL-IRLOCK
            ex = None
            try:
                self.set_parameters({
                    "PLND_ENABLED": 1,
                    "PLND_TYPE": backend,
                })

                self.set_analog_rangefinder_parameters()
                self.set_parameter("SIM_SONAR_SCALE", 12)

                start = self.mav.location()
                target = start
                (target.lat, target.lng) = mavextra.gps_offset(start.lat, start.lng, 4, -4)
                self.progress("Setting target to %f %f" % (target.lat, target.lng))

                self.set_parameters({
                    "SIM_PLD_ENABLE": 1,
                    "SIM_PLD_LAT": target.lat,
                    "SIM_PLD_LON": target.lng,
                    "SIM_PLD_HEIGHT": 0,
                    "SIM_PLD_ALT_LMT": 15,
                    "SIM_PLD_DIST_LMT": 10,
                })

                self.reboot_sitl()

                self.progress("Waiting for location")
                self.zero_throttle()
                self.takeoff(10, 1800, mode="LOITER")
                self.change_mode("LAND")
                self.zero_throttle()
                self.wait_landed_and_disarmed()
                self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
                new_pos = self.mav.location()
                delta = self.get_distance(target, new_pos)
                self.progress("Landed %f metres from target position" % delta)
                max_delta = 1
                if delta > max_delta:
                    raise NotAchievedException("Did not land close enough to target position (%fm > %fm" % (delta, max_delta))

                if not self.current_onboard_log_contains_message("PL"):
                    raise NotAchievedException("Did not see expected PL message")

            except Exception as e:
                self.print_exception_caught(e)
                ex = e
            self.reboot_sitl()
        self.zero_throttle()
        self.context_pop()
        self.reboot_sitl()
        self.progress("All done")

        if ex is not None:
            raise ex

    def Landing(self):
        """Test landing the aircraft."""

        def check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, land_speed_high_accuracy=0.1):
            self.progress("Checking landing speeds (speed_high=%f speed_low=%f alt_low=%f" %
                          (land_speed_high, land_speed_low, land_alt_low))
            land_high_maintain = 5
            land_low_maintain = land_alt_low / land_speed_low / 2

            takeoff_alt = (land_high_maintain * land_speed_high + land_alt_low) + 20
            # this is pretty rough, but takes *so much longer* in LOITER
            self.takeoff(takeoff_alt, mode='STABILIZE', timeout=200, takeoff_throttle=2000)
            # check default landing speeds:
            self.change_mode('LAND')
            # ensure higher-alt descent rate:
            self.wait_descent_rate(land_speed_high,
                                   minimum_duration=land_high_maintain,
                                   accuracy=land_speed_high_accuracy)
            self.wait_descent_rate(land_speed_low)
            # ensure we transition to low descent rate at correct height:
            self.assert_altitude(land_alt_low, relative=True)
            # now make sure we maintain that descent rate:
            self.wait_descent_rate(land_speed_low, minimum_duration=land_low_maintain)
            self.wait_disarmed()

        # test the defaults.  By default LAND_SPEED_HIGH is 0 so
        # WPNAV_SPEED_DN is used
        check_landing_speeds(
            self.get_parameter("WPNAV_SPEED_DN") / 100,  # cm/s -> m/s
            self.get_parameter("LAND_SPEED") / 100,  # cm/s -> m/s
            self.get_parameter("LAND_ALT_LOW") / 100 # cm -> m
        )

        def test_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs):
            self.set_parameters({
                "LAND_SPEED_HIGH": land_speed_high * 100,  # m/s -> cm/s
                "LAND_SPEED": land_speed_low * 100,  # m/s -> cm/s
                "LAND_ALT_LOW": land_alt_low * 100,  # m -> cm
            })
            check_landing_speeds(land_speed_high, land_speed_low, land_alt_low, **kwargs)

        test_landing_speeds(
            5,  # descent speed high
            1,  # descent speed low
            30,  # transition altitude
            land_speed_high_accuracy=0.5
        )

    def get_system_clock_utc(self, time_seconds):
        # this is a copy of ArduPilot's AP_RTC function!
        # separate time into ms, sec, min, hour and days but all expressed
        # in milliseconds
        time_ms = time_seconds * 1000
        ms = time_ms % 1000
        sec_ms = (time_ms % (60 * 1000)) - ms
        min_ms = (time_ms % (60 * 60 * 1000)) - sec_ms - ms
        hour_ms = (time_ms % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms

        # convert times as milliseconds into appropriate units
        secs = sec_ms / 1000
        mins = min_ms / (60 * 1000)
        hours = hour_ms / (60 * 60 * 1000)
        return (hours, mins, secs, 0)

    def calc_delay(self, seconds, delay_for_seconds):
        # delay-for-seconds has to be long enough that we're at the
        # waypoint before that time.  Otherwise we'll try to wait a
        # day....
        if delay_for_seconds >= 3600:
            raise ValueError("Won't handle large delays")
        (hours,
         mins,
         secs,
         ms) = self.get_system_clock_utc(seconds)
        self.progress("Now is %uh %um %us" % (hours, mins, secs))
        secs += delay_for_seconds # add seventeen seconds
        mins += int(secs/60)
        secs %= 60

        hours += int(mins / 60)
        mins %= 60

        if hours > 24:
            raise ValueError("Way too big a delay")
        self.progress("Delay until %uh %um %us" %
                      (hours, mins, secs))
        return (hours, mins, secs, 0)

    def reset_delay_item(self, seq, seconds_in_future):
        frame = mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT
        command = mavutil.mavlink.MAV_CMD_NAV_DELAY
        # retrieve mission item and check it:
        tried_set = False
        hours = None
        mins = None
        secs = None
        while True:
            self.progress("Requesting item")
            self.mav.mav.mission_request_send(1,
                                              1,
                                              seq)
            st = self.mav.recv_match(type='MISSION_ITEM',
                                     blocking=True,
                                     timeout=1)
            if st is None:
                continue

            print("Item: %s" % str(st))
            have_match = (tried_set and
                          st.seq == seq and
                          st.command == command and
                          st.param2 == hours and
                          st.param3 == mins and
                          st.param4 == secs)
            if have_match:
                return

            self.progress("Mission mismatch")

            m = None
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time_cached() - tstart > 3:
                    raise NotAchievedException(
                        "Did not receive MISSION_REQUEST")
                self.mav.mav.mission_write_partial_list_send(1,
                                                             1,
                                                             seq,
                                                             seq)
                m = self.mav.recv_match(type='MISSION_REQUEST',
                                        blocking=True,
                                        timeout=1)
                if m is None:
                    continue
                if m.seq != st.seq:
                    continue
                break

            self.progress("Sending absolute-time mission item")

            # we have to change out the delay time...
            now = self.mav.messages["SYSTEM_TIME"]
            if now is None:
                raise PreconditionFailedException("Never got SYSTEM_TIME")
            if now.time_unix_usec == 0:
                raise PreconditionFailedException("system time is zero")
            (hours, mins, secs, ms) = self.calc_delay(now.time_unix_usec/1000000, seconds_in_future)

            self.mav.mav.mission_item_send(
                1, # target system
                1, # target component
                seq, # seq
                frame, # frame
                command, # command
                0, # current
                1, # autocontinue
                0, # p1 (relative seconds)
                hours, # p2
                mins, # p3
                secs, # p4
                0, # p5
                0, # p6
                0) # p7
            tried_set = True
            ack = self.mav.recv_match(type='MISSION_ACK',
                                      blocking=True,
                                      timeout=1)
            self.progress("Received ack: %s" % str(ack))

    def NavDelayAbsTime(self):
        """fly a simple mission that has a delay in it"""
        self.fly_nav_delay_abstime_x(87)

    def fly_nav_delay_abstime_x(self, delay_for, expected_delay=None):
        """fly a simple mission that has a delay in it, expect a delay"""

        if expected_delay is None:
            expected_delay = delay_for

        self.load_mission("copter_nav_delay.txt")

        self.change_mode("LOITER")

        self.wait_ready_to_arm()

        delay_item_seq = 3
        self.reset_delay_item(delay_item_seq, delay_for)
        delay_for_seconds = delay_for
        reset_at_m = self.mav.recv_match(type='SYSTEM_TIME', blocking=True)
        reset_at = reset_at_m.time_unix_usec/1000000

        self.arm_vehicle()
        self.change_mode("AUTO")
        self.set_rc(3, 1600)
        count_stop = -1
        tstart = self.get_sim_time()
        while self.armed(): # we RTL at end of mission
            now = self.get_sim_time_cached()
            if now - tstart > 240:
                raise AutoTestTimeoutException("Did not disarm as expected")
            m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
            at_delay_item = ""
            if m.seq == delay_item_seq:
                at_delay_item = "(delay item)"
            self.progress("MISSION_CURRENT.seq=%u %s" % (m.seq, at_delay_item))
            if m.seq > delay_item_seq:
                if count_stop == -1:
                    count_stop_m = self.mav.recv_match(type='SYSTEM_TIME',
                                                       blocking=True)
                    count_stop = count_stop_m.time_unix_usec/1000000
        calculated_delay = count_stop - reset_at
        error = abs(calculated_delay - expected_delay)
        self.progress("Stopped for %u seconds (want >=%u seconds)" %
                      (calculated_delay, delay_for_seconds))
        if error > 2:
            raise NotAchievedException("delay outside expectations")

    def NavDelayTakeoffAbsTime(self):
        """make sure taking off at a specific time works"""
        self.load_mission("copter_nav_delay_takeoff.txt")

        self.change_mode("LOITER")
        self.wait_ready_to_arm()

        delay_item_seq = 2
        delay_for_seconds = 77
        self.reset_delay_item(delay_item_seq, delay_for_seconds)
        reset_at = self.get_sim_time_cached()

        self.arm_vehicle()
        self.change_mode("AUTO")

        self.set_rc(3, 1600)

        # should not take off for about least 77 seconds
        tstart = self.get_sim_time()
        took_off = False
        while self.armed():
            now = self.get_sim_time_cached()
            if now - tstart > 200:
                # timeout
                break
            m = self.mav.recv_match(type='MISSION_CURRENT', blocking=True)
            now = self.get_sim_time_cached()
            self.progress("%s" % str(m))
            if m.seq > delay_item_seq:
                if not took_off:
                    took_off = True
                    delta_time = now - reset_at
                    if abs(delta_time - delay_for_seconds) > 2:
                        raise NotAchievedException((
                            "Did not take off on time "
                            "measured=%f want=%f" %
                            (delta_time, delay_for_seconds)))

        if not took_off:
            raise NotAchievedException("Did not take off")

    def ModeZigZag(self):
        '''test zigzag mode'''
        # set channel 8 for zigzag savewp and recentre it
        self.set_parameter("RC8_OPTION", 61)

        self.takeoff(alt_min=5, mode='LOITER')

        ZIGZAG = 24
        j = 0
        slowdown_speed = 0.3 # because Copter takes a long time to actually stop
        self.start_subtest("Conduct ZigZag test for all 4 directions")
        while j < 4:
            self.progress("## Align heading with the run-way (j=%d)##" % j)
            self.set_rc(8, 1500)
            self.set_rc(4, 1420)
            self.wait_heading(352-j*90)
            self.set_rc(4, 1500)
            self.change_mode(ZIGZAG)
            self.progress("## Record Point A ##")
            self.set_rc(8, 1100)  # record point A
            self.set_rc(1, 1700)  # fly side-way for 20m
            self.wait_distance(20)
            self.set_rc(1, 1500)
            self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
            self.progress("## Record Point A ##")
            self.set_rc(8, 1500)    # pilot always have to cross mid position when changing for low to high position
            self.set_rc(8, 1900)    # record point B

            i = 1
            while i < 2:
                self.start_subtest("Run zigzag A->B and B->A (i=%d)" % i)
                self.progress("## fly forward for 10 meter ##")
                self.set_rc(2, 1300)
                self.wait_distance(10)
                self.set_rc(2, 1500)    # re-centre pitch rc control
                self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
                self.set_rc(8, 1500)    # switch to mid position
                self.progress("## auto execute vector BA ##")
                self.set_rc(8, 1100)
                self.wait_distance(17)  # wait for it to finish
                self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down

                self.progress("## fly forward for 10 meter ##")
                self.set_rc(2, 1300)    # fly forward for 10 meter
                self.wait_distance(10)
                self.set_rc(2, 1500)    # re-centre pitch rc control
                self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
                self.set_rc(8, 1500)    # switch to mid position
                self.progress("## auto execute vector AB ##")
                self.set_rc(8, 1900)
                self.wait_distance(17)  # wait for it to finish
                self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
                i = i + 1
            # test the case when pilot switch to manual control during the auto flight
            self.start_subtest("test the case when pilot switch to manual control during the auto flight")
            self.progress("## fly forward for 10 meter ##")
            self.set_rc(2, 1300)    # fly forward for 10 meter
            self.wait_distance(10)
            self.set_rc(2, 1500)    # re-centre pitch rc control
            self.wait_groundspeed(0, 0.3)   # wait until the copter slows down
            self.set_rc(8, 1500)    # switch to mid position
            self.progress("## auto execute vector BA ##")
            self.set_rc(8, 1100)    # switch to low position, auto execute vector BA
            self.wait_distance(8)   # purposely switch to manual halfway
            self.set_rc(8, 1500)
            self.wait_groundspeed(0, slowdown_speed)   # copter should slow down here
            self.progress("## Manual control to fly forward ##")
            self.set_rc(2, 1300)    # manual control to fly forward
            self.wait_distance(8)
            self.set_rc(2, 1500)    # re-centre pitch rc control
            self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
            self.progress("## continue vector BA ##")
            self.set_rc(8, 1100)    # copter should continue mission here
            self.wait_distance(8)   # wait for it to finish rest of BA
            self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
            self.set_rc(8, 1500)    # switch to mid position
            self.progress("## auto execute vector AB ##")
            self.set_rc(8, 1900)    # switch to execute AB again
            self.wait_distance(17)  # wait for it to finish
            self.wait_groundspeed(0, slowdown_speed)   # wait until the copter slows down
            self.change_mode('LOITER')
            j = j + 1

        self.do_RTL()

    def SetModesViaModeSwitch(self):
        '''Set modes via modeswitch'''
        self.context_push()
        ex = None
        try:
            fltmode_ch = 5
            self.set_parameter("FLTMODE_CH", fltmode_ch)
            self.set_rc(fltmode_ch, 1000) # PWM for mode1
            testmodes = [("FLTMODE1", 4, "GUIDED", 1165),
                         ("FLTMODE2", 2, "ALT_HOLD", 1295),
                         ("FLTMODE3", 6, "RTL", 1425),
                         ("FLTMODE4", 7, "CIRCLE", 1555),
                         ("FLTMODE5", 1, "ACRO", 1685),
                         ("FLTMODE6", 17, "BRAKE", 1815),
                         ]
            for mode in testmodes:
                (parm, parm_value, name, pwm) = mode
                self.set_parameter(parm, parm_value)

            for mode in reversed(testmodes):
                (parm, parm_value, name, pwm) = mode
                self.set_rc(fltmode_ch, pwm)
                self.wait_mode(name)

            for mode in testmodes:
                (parm, parm_value, name, pwm) = mode
                self.set_rc(fltmode_ch, pwm)
                self.wait_mode(name)

            for mode in reversed(testmodes):
                (parm, parm_value, name, pwm) = mode
                self.set_rc(fltmode_ch, pwm)
                self.wait_mode(name)

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        if ex is not None:
            raise ex

    def SetModesViaAuxSwitch(self):
        '''"Set modes via auxswitch"'''
        self.context_push()
        ex = None
        try:
            fltmode_ch = int(self.get_parameter("FLTMODE_CH"))
            self.set_rc(fltmode_ch, 1000)
            self.wait_mode("CIRCLE")
            self.set_rc(9, 1000)
            self.set_rc(10, 1000)
            self.set_parameters({
                "RC9_OPTION": 18, # land
                "RC10_OPTION": 55, # guided
            })
            self.set_rc(9, 1900)
            self.wait_mode("LAND")
            self.set_rc(10, 1900)
            self.wait_mode("GUIDED")
            self.set_rc(10, 1000) # this re-polls the mode switch
            self.wait_mode("CIRCLE")
        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        if ex is not None:
            raise ex

    def fly_guided_stop(self,
                        timeout=20,
                        groundspeed_tolerance=0.05,
                        climb_tolerance=0.01):
        """stop the vehicle moving in guided mode"""
        self.progress("Stopping vehicle")
        tstart = self.get_sim_time()
        # send a position-control command
        self.mav.mav.set_position_target_local_ned_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_BODY_NED,
            MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z
            0, # x
            0, # y
            0, # z
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )
        while True:
            if self.get_sim_time_cached() - tstart > timeout:
                raise NotAchievedException("Vehicle did not stop")
            m = self.mav.recv_match(type='VFR_HUD', blocking=True)
            print("%s" % str(m))
            if (m.groundspeed < groundspeed_tolerance and
                    m.climb < climb_tolerance):
                break

    def fly_guided_move_global_relative_alt(self, lat, lon, alt):
        startpos = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                       blocking=True)

        self.mav.mav.set_position_target_global_int_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
            MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # mask specifying use-only-lat-lon-alt
            lat, # lat
            lon, # lon
            alt, # alt
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )

        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > 200:
                raise NotAchievedException("Did not move far enough")
            # send a position-control command
            pos = self.mav.recv_match(type='GLOBAL_POSITION_INT',
                                      blocking=True)
            delta = self.get_distance_int(startpos, pos)
            self.progress("delta=%f (want >10)" % delta)
            if delta > 10:
                break

    def fly_guided_move_local(self, x, y, z_up, timeout=100):
        """move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED"""
        startpos = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
        self.progress("startpos=%s" % str(startpos))

        tstart = self.get_sim_time()
        # send a position-control command
        self.mav.mav.set_position_target_local_ned_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_LOCAL_NED,
            MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-x-y-z
            x, # x
            y, # y
            -z_up,# z
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )
        while True:
            if self.get_sim_time_cached() - tstart > timeout:
                raise NotAchievedException("Did not reach destination")
            if self.distance_to_local_position((x, y, -z_up)) < 1:
                break

    def test_guided_local_position_target(self, x, y, z_up):
        """ Check target position being received by vehicle """
        # set POSITION_TARGET_LOCAL_NED message rate using SET_MESSAGE_INTERVAL
        self.progress("Setting local target in NED: (%f, %f, %f)" % (x, y, -z_up))
        self.progress("Setting rate to 1 Hz")
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 1)

        # mask specifying use only xyz
        target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY

        # set position target
        self.mav.mav.set_position_target_local_ned_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_LOCAL_NED,
            target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
            x, # x
            y, # y
            -z_up, # z
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )
        m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=2)
        self.progress("Received local target: %s" % str(m))

        if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask):
            raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" %
                                       ((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask))

        if x - m.x > 0.1:
            raise NotAchievedException("Did not receive proper target position x: wanted=%f got=%f" % (x, m.x))

        if y - m.y > 0.1:
            raise NotAchievedException("Did not receive proper target position y: wanted=%f got=%f" % (y, m.y))

        if z_up - (-m.z) > 0.1:
            raise NotAchievedException("Did not receive proper target position z: wanted=%f got=%f" % (z_up, -m.z))

    def test_guided_local_velocity_target(self, vx, vy, vz_up, timeout=3):
        " Check local target velocity being received by vehicle "
        self.progress("Setting local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up))
        self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz")
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10)

        # mask specifying use only vx,vy,vz & accel. Even though we don't test acceltargets below currently
        #  a velocity only mask returns a velocity & accel mask
        target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE |
                           MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)

        # Drain old messages and ignore the ramp-up to the required target velocity
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() - tstart < timeout:
            # send velocity-control command
            self.mav.mav.set_position_target_local_ned_send(
                0, # timestamp
                1, # target system_id
                1, # target component id
                mavutil.mavlink.MAV_FRAME_LOCAL_NED,
                target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
                0, # x
                0, # y
                0, # z
                vx, # vx
                vy, # vy
                -vz_up, # vz
                0, # afx
                0, # afy
                0, # afz
                0, # yaw
                0, # yawrate
            )
            m = self.assert_receive_message('POSITION_TARGET_LOCAL_NED')

            self.progress("Received local target: %s" % str(m))

        # Check the last received message
        if not (m.type_mask == (target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE) or m.type_mask == target_typemask):
            raise NotAchievedException("Did not receive proper mask: expected=%u or %u, got=%u" %
                                       ((target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE), target_typemask, m.type_mask))

        if vx - m.vx > 0.1:
            raise NotAchievedException("Did not receive proper target velocity vx: wanted=%f got=%f" % (vx, m.vx))

        if vy - m.vy > 0.1:
            raise NotAchievedException("Did not receive proper target velocity vy: wanted=%f got=%f" % (vy, m.vy))

        if vz_up - (-m.vz) > 0.1:
            raise NotAchievedException("Did not receive proper target velocity vz: wanted=%f got=%f" % (vz_up, -m.vz))

        self.progress("Received proper target velocity commands")

    def wait_for_local_velocity(self, vx, vy, vz_up, timeout=10):
        """ Wait for local target velocity"""

        # debug messages
        self.progress("Waiting for local NED velocity target: (%f, %f, %f)" % (vx, vy, -vz_up))
        self.progress("Setting LOCAL_POSITION_NED message rate to 10Hz")

        # set position local ned message stream rate
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_LOCAL_POSITION_NED, 10)

        # wait for position local ned message
        tstart = self.get_sim_time()
        while self.get_sim_time_cached() - tstart < timeout:

            # get position target local ned message
            m = self.mav.recv_match(type="LOCAL_POSITION_NED", blocking=True, timeout=1)

            # could not be able to get a valid target local ned message within given time
            if m is None:

                # raise an error that did not receive a valid target local ned message within given time
                raise NotAchievedException("Did not receive any position local ned message for 1 second!")

            # got a valid target local ned message within given time
            else:

                # debug message
                self.progress("Received local position ned message: %s" % str(m))

                # check if velocity values are in range
                if vx - m.vx <= 0.1 and vy - m.vy <= 0.1 and vz_up - (-m.vz) <= 0.1:

                    # get out of function
                    self.progress("Vehicle successfully reached to target velocity!")
                    return

        # raise an exception
        error_message = "Did not receive target velocities vx, vy, vz_up, wanted=(%f, %f, %f) got=(%f, %f, %f)"
        error_message = error_message % (vx, vy, vz_up, m.vx, m.vy, -m.vz)
        raise NotAchievedException(error_message)

    def test_position_target_message_mode(self):
        " Ensure that POSITION_TARGET_LOCAL_NED messages are sent in Guided Mode only "
        self.hover()
        self.change_mode('LOITER')
        self.progress("Setting POSITION_TARGET_LOCAL_NED message rate to 10Hz")
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, 10)

        tstart = self.get_sim_time()
        while self.get_sim_time_cached() < tstart + 5:
            m = self.mav.recv_match(type='POSITION_TARGET_LOCAL_NED', blocking=True, timeout=1)
            if m is None:
                continue

            raise NotAchievedException("Received POSITION_TARGET message in LOITER mode: %s" % str(m))

        self.progress("Did not receive any POSITION_TARGET_LOCAL_NED message in LOITER mode. Success")

    def earth_to_body(self, vector):
        r = mavextra.rotation(self.mav.messages["ATTITUDE"]).invert()
        #        print("r=%s" % str(r))
        return r * vector

    def precision_loiter_to_pos(self, x, y, z, timeout=40):
        '''send landing_target messages at vehicle until it arrives at
        location to x, y, z from origin (in metres), z is *up*'''
        dest_ned = rotmat.Vector3(x, y, -z)
        tstart = self.get_sim_time()
        success_start = -1
        while True:
            now = self.get_sim_time_cached()
            if now - tstart > timeout:
                raise NotAchievedException("Did not loiter to position!")
            m_pos = self.mav.recv_match(type='LOCAL_POSITION_NED',
                                        blocking=True)
            pos_ned = rotmat.Vector3(m_pos.x, m_pos.y, m_pos.z)
            #            print("dest_ned=%s" % str(dest_ned))
            #            print("pos_ned=%s" % str(pos_ned))
            delta_ef = dest_ned - pos_ned
            #            print("delta_ef=%s" % str(delta_ef))

            # determine if we've successfully navigated to close to
            # where we should be:
            dist = math.sqrt(delta_ef.x * delta_ef.x + delta_ef.y * delta_ef.y)
            dist_max = 0.15
            self.progress("dist=%f want <%f" % (dist, dist_max))
            if dist < dist_max:
                # success!  We've gotten within our target distance
                if success_start == -1:
                    success_start = now
                elif now - success_start > 10:
                    self.progress("Yay!")
                    break
            else:
                success_start = -1

            delta_bf = self.earth_to_body(delta_ef)
            #            print("delta_bf=%s" % str(delta_bf))
            angle_x = math.atan2(delta_bf.y, delta_bf.z)
            angle_y = -math.atan2(delta_bf.x, delta_bf.z)
            distance = math.sqrt(delta_bf.x * delta_bf.x +
                                 delta_bf.y * delta_bf.y +
                                 delta_bf.z * delta_bf.z)
            #            att = self.mav.messages["ATTITUDE"]
            #            print("r=%f p=%f y=%f" % (math.degrees(att.roll), math.degrees(att.pitch), math.degrees(att.yaw)))
            #            print("angle_x=%s angle_y=%s" % (str(math.degrees(angle_x)), str(math.degrees(angle_y))))
            #            print("distance=%s" % str(distance))

            self.mav.mav.landing_target_send(
                0, # time_usec
                1, # target_num
                mavutil.mavlink.MAV_FRAME_GLOBAL, # frame; AP ignores
                angle_x, # angle x (radians)
                angle_y, # angle y (radians)
                distance, # distance to target
                0.01, # size of target in radians, X-axis
                0.01 # size of target in radians, Y-axis
            )

    def PayLoadPlaceMission(self):
        """Test payload placing in auto."""
        self.context_push()

        ex = None
        try:
            self.set_analog_rangefinder_parameters()
            self.set_parameters({
                "GRIP_ENABLE": 1,
                "GRIP_TYPE": 1,
                "SIM_GRPS_ENABLE": 1,
                "SIM_GRPS_PIN": 8,
                "SERVO8_FUNCTION": 28,
            })
            self.reboot_sitl()

            self.load_mission("copter_payload_place.txt")
            if self.mavproxy is not None:
                self.mavproxy.send('wp list\n')

            self.set_parameter("AUTO_OPTIONS", 3)
            self.change_mode('AUTO')
            self.wait_ready_to_arm()

            self.arm_vehicle()

            self.wait_text("Gripper load releas", timeout=90)
            dist_limit = 1
            # this is a copy of the point in the mission file:
            target_loc = mavutil.location(-35.363106,
                                          149.165436,
                                          0,
                                          0)
            dist = self.get_distance(target_loc, self.mav.location())
            self.progress("dist=%f" % (dist,))
            if dist > dist_limit:
                raise NotAchievedException("Did not honour target lat/lng (dist=%f want <%f" %
                                           (dist, dist_limit))

            self.wait_disarmed()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()
        self.reboot_sitl()
        self.progress("All done")

        if ex is not None:
            raise ex

    def Weathervane(self):
        '''Test copter weathervaning'''
        # We test nose into wind code paths and yaw direction here and test side into wind
        # yaw direction in QuadPlane tests to reduce repetition.
        self.set_parameters({
            "SIM_WIND_SPD": 10,
            "SIM_WIND_DIR": 100,
            "GUID_OPTIONS": 129, # allow weathervaning and arming from tx in guided
            "AUTO_OPTIONS": 131, # allow arming in auto, take off without raising the stick, and weathervaning
            "WVANE_ENABLE": 1,
            "WVANE_GAIN": 3,
            "WVANE_VELZ_MAX": 1,
            "WVANE_SPD_MAX": 2
        })

        self.progress("Test weathervaning in auto")
        self.load_mission("weathervane_mission.txt", strict=False)

        self.change_mode("AUTO")
        self.wait_ready_to_arm()
        self.arm_vehicle()

        self.wait_statustext("Weathervane Active", timeout=60)
        self.do_RTL()
        self.wait_disarmed()
        self.change_mode("GUIDED")

        # After take off command in guided we enter the velaccl sub mode
        self.progress("Test weathervaning in guided vel-accel")
        self.set_rc(3, 1000)
        self.wait_ready_to_arm()

        self.arm_vehicle()
        self.user_takeoff(alt_min=15)
        # Wait for heading to match wind direction.
        self.wait_heading(100, accuracy=8, timeout=100)

        self.progress("Test weathervaning in guided pos only")
        # Travel directly north to align heading north and build some airspeed.
        self.fly_guided_move_local(x=40, y=0, z_up=15)
        # Wait for heading to match wind direction.
        self.wait_heading(100, accuracy=8, timeout=100)
        self.do_RTL()

    def GuidedSubModeChange(self):
        """"Ensure we can move around in guided after a takeoff command."""

        '''start by disabling GCS failsafe, otherwise we immediately disarm
        due to (apparently) not receiving traffic from the GCS for
        too long.  This is probably a function of --speedup'''
        self.set_parameters({
            "FS_GCS_ENABLE": 0,
            "DISARM_DELAY": 0, # until traffic problems are fixed
        })
        self.change_mode("GUIDED")
        self.wait_ready_to_arm()
        self.arm_vehicle()

        self.user_takeoff(alt_min=10)

        self.start_subtest("yaw through absolute angles using MAV_CMD_CONDITION_YAW")
        self.guided_achieve_heading(45)
        self.guided_achieve_heading(135)

        self.start_subtest("move the vehicle using set_position_target_global_int")
        # the following numbers are 5-degree-latitude and 5-degrees
        # longitude - just so that we start to really move a lot.
        self.fly_guided_move_global_relative_alt(5, 5, 10)

        self.start_subtest("move the vehicle using MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED")
        self.fly_guided_stop(groundspeed_tolerance=0.1)
        self.fly_guided_move_local(5, 5, 10)

        self.start_subtest("Checking that WP_YAW_BEHAVIOUR 0 works")
        self.set_parameter('WP_YAW_BEHAVIOR', 0)
        self.delay_sim_time(2)
        orig_heading = self.get_heading()
        self.fly_guided_move_local(5, 0, 10)
        # ensure our heading hasn't changed:
        self.assert_heading(orig_heading)
        self.fly_guided_move_local(0, 5, 10)
        # ensure our heading hasn't changed:
        self.assert_heading(orig_heading)

        self.start_subtest("Check target position received by vehicle using SET_MESSAGE_INTERVAL")
        self.test_guided_local_position_target(5, 5, 10)
        self.test_guided_local_velocity_target(2, 2, 1)
        self.test_position_target_message_mode()

        self.do_RTL()

    def TestGripperMission(self):
        '''Test Gripper mission items'''
        self.context_push()
        ex = None
        try:
            self.load_mission("copter-gripper-mission.txt")
            self.change_mode('LOITER')
            self.wait_ready_to_arm()
            self.assert_vehicle_location_is_at_startup_location()
            self.arm_vehicle()
            self.change_mode('AUTO')
            self.set_rc(3, 1500)
            self.wait_statustext("Gripper Grabbed", timeout=60)
            self.wait_statustext("Gripper Released", timeout=60)
        except Exception as e:
            self.print_exception_caught(e)
            self.change_mode('LAND')
            ex = e
        self.context_pop()
        self.wait_disarmed()
        if ex is not None:
            raise ex

    def SplineLastWaypoint(self):
        '''Test Spline as last waypoint'''
        self.context_push()
        ex = None
        try:
            self.load_mission("copter-spline-last-waypoint.txt")
            self.change_mode('LOITER')
            self.wait_ready_to_arm()
            self.arm_vehicle()
            self.change_mode('AUTO')
            self.set_rc(3, 1500)
            self.wait_altitude(10, 3000, relative=True)
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.do_RTL()
        self.wait_disarmed()
        if ex is not None:
            raise ex

    def ManualThrottleModeChange(self):
        '''Check manual throttle mode changes denied on high throttle'''
        self.set_parameter("FS_GCS_ENABLE", 0) # avoid GUIDED instant disarm
        self.change_mode("STABILIZE")
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.change_mode("ACRO")
        self.change_mode("STABILIZE")
        self.change_mode("GUIDED")
        self.set_rc(3, 1700)
        self.watch_altitude_maintained(altitude_min=-1, altitude_max=0.2) # should not take off in guided
        self.run_cmd_do_set_mode(
            "ACRO",
            want_result=mavutil.mavlink.MAV_RESULT_FAILED)
        self.run_cmd_do_set_mode(
            "STABILIZE",
            want_result=mavutil.mavlink.MAV_RESULT_FAILED)
        self.run_cmd_do_set_mode(
            "DRIFT",
            want_result=mavutil.mavlink.MAV_RESULT_FAILED)
        self.progress("Check setting an invalid mode")
        self.run_cmd(
            mavutil.mavlink.MAV_CMD_DO_SET_MODE,
            mavutil.mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED,
            126,
            0,
            0,
            0,
            0,
            0,
            want_result=mavutil.mavlink.MAV_RESULT_FAILED,
            timeout=1
        )
        self.set_rc(3, 1000)
        self.run_cmd_do_set_mode("ACRO")
        self.wait_disarmed()

    def test_mount_pitch(self, despitch, despitch_tolerance, mount_mode, timeout=10, hold=0):
        tstart = self.get_sim_time()
        success_start = 0
        while True:
            now = self.get_sim_time_cached()
            if now - tstart > timeout:
                raise NotAchievedException("Mount pitch not achieved")

            '''retrieve latest angles from GIMBAL_DEVICE_ATTITUDE_STATUS'''
            mount_roll, mount_pitch, mount_yaw = self.get_mount_roll_pitch_yaw_deg()

            self.progress("despitch=%f roll=%f pitch=%f yaw=%f" % (despitch, mount_roll, mount_pitch, mount_yaw))
            if abs(despitch - mount_pitch) > despitch_tolerance:
                self.progress("Mount pitch incorrect: got=%f want=%f (+/- %f)" %
                              (mount_pitch, despitch, despitch_tolerance))
                success_start = 0
                continue
            self.progress("Mount pitch correct: %f degrees == %f" %
                          (mount_pitch, despitch))
            if success_start == 0:
                success_start = now
                continue
            if now - success_start > hold:
                self.progress("Mount pitch achieved")
                return

    def do_pitch(self, pitch):
        '''pitch aircraft in guided/angle mode'''
        self.mav.mav.set_attitude_target_send(
            0, # time_boot_ms
            1, # target sysid
            1, # target compid
            0, # bitmask of things to ignore
            mavextra.euler_to_quat([0, math.radians(pitch), 0]), # att
            0, # roll rate  (rad/s)
            0, # pitch rate (rad/s)
            0, # yaw rate   (rad/s)
            0.5) # thrust, 0 to 1, translated to a climb/descent rate

    def do_yaw_rate(self, yaw_rate):
        '''yaw aircraft in guided/rate mode'''
        self.run_cmd(
            mavutil.mavlink.MAV_CMD_CONDITION_YAW,
            60,  # target angle
            0,  # degrees/second
            1,  # -1 is counter-clockwise, 1 clockwise
            1,  # 1 for relative, 0 for absolute
            0,  # p5
            0,  # p6
            0,  # p7
            quiet=True)

    def setup_servo_mount(self, roll_servo=5, pitch_servo=6, yaw_servo=7):
        '''configure a rpy servo mount; caller responsible for required rebooting'''
        self.progress("Setting up servo mount")
        self.set_parameters({
            "MNT1_TYPE": 1,
            "MNT1_PITCH_MIN": -45,
            "MNT1_PITCH_MAX": 45,
            "RC6_OPTION": 213,  # MOUNT1_PITCH
            "SERVO%u_FUNCTION" % roll_servo: 8, # roll
            "SERVO%u_FUNCTION" % pitch_servo: 7, # pitch
            "SERVO%u_FUNCTION" % yaw_servo: 6, # yaw
        })

    def get_mount_roll_pitch_yaw_deg(self):
        '''return mount (aka gimbal) roll, pitch and yaw angles in degrees'''
        # wait for gimbal attitude message
        m = self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5)

        # convert quaternion to euler angles and return
        q = quaternion.Quaternion(m.q)
        euler = q.euler
        return math.degrees(euler[0]), math.degrees(euler[1]), math.degrees(euler[2])

    def set_mount_mode(self, mount_mode):
        '''set mount mode'''
        self.run_cmd(mavutil.mavlink.MAV_CMD_DO_MOUNT_CONFIGURE,
                     mount_mode,
                     0, # stabilize roll (unsupported)
                     0, # stabilize pitch (unsupported)
                     0, 0, 0, 0)

    def Mount(self):
        '''Test Camera/Antenna Mount'''
        ex = None
        self.context_push()
        old_srcSystem = self.mav.mav.srcSystem
        self.mav.mav.srcSystem = 250
        self.set_parameter("DISARM_DELAY", 0)
        try:
            '''start by disabling GCS failsafe, otherwise we immediately disarm
            due to (apparently) not receiving traffic from the GCS for
            too long.  This is probably a function of --speedup'''
            self.set_parameter("FS_GCS_ENABLE", 0)

            # setup mount parameters
            self.setup_servo_mount()
            self.reboot_sitl() # to handle MNT_TYPE changing

            # make sure we're getting gimbal device attitude status
            self.assert_receive_message('GIMBAL_DEVICE_ATTITUDE_STATUS', timeout=5)

            # change mount to neutral mode (point forward, not stabilising)
            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)

            # test pitch is not stabilising
            mount_roll_deg, mount_pitch_deg, mount_yaw_deg = self.get_mount_roll_pitch_yaw_deg()
            if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0:
                raise NotAchievedException("Mount stabilising when not requested")

            self.change_mode('GUIDED')
            self.wait_ready_to_arm()
            self.arm_vehicle()

            self.user_takeoff()

            # pitch vehicle back and confirm gimbal is still not stabilising
            despitch = 10
            despitch_tolerance = 3

            self.progress("Pitching vehicle")
            self.do_pitch(despitch) # will time out!

            self.wait_pitch(despitch, despitch_tolerance)

            # check gimbal is still not stabilising
            mount_roll_deg, mount_pitch_deg, mount_yaw_deg = self.get_mount_roll_pitch_yaw_deg()
            if mount_roll_deg != 0 or mount_pitch_deg != 0 or mount_yaw_deg != 0:
                raise NotAchievedException("Mount stabilising when not requested")

            # center RC tilt control and change mount to RC_TARGETING mode
            self.progress("Gimbal to RC Targetting mode")
            self.set_rc(6, 1500)
            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

            # pitch vehicle back and confirm gimbal is stabilising
            self.progress("Pitching vehicle")
            self.do_pitch(despitch)
            self.wait_pitch(despitch, despitch_tolerance)
            self.test_mount_pitch(-despitch, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

            # point gimbal at specified angle
            self.progress("Point gimbal using GIMBAL_MANAGER_PITCHYAW (ANGLE)")
            self.do_pitch(0)    # level vehicle
            self.wait_pitch(0, despitch_tolerance)
            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING)
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW,
                         -20,   # pitch angle in degrees
                         0,     # yaw angle in degrees
                         0,     # pitch rate in degrees (NaN to ignore)
                         0,     # yaw rate in degrees (NaN to ignore)
                         0,     # flags (0=Body-frame, 16/GIMBAL_MANAGER_FLAGS_YAW_LOCK=Earth Frame)
                         0,     # unused
                         0)     # gimbal id
            self.test_mount_pitch(-20, 1, mavutil.mavlink.MAV_MOUNT_MODE_MAVLINK_TARGETING)

            # point gimbal at specified location
            self.progress("Point gimbal at Location using MOUNT_CONTROL (GPS)")
            self.do_pitch(despitch)
            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)

            # Delay here to allow the attitude to command to timeout and level out the copter a bit
            self.delay_sim_time(3)

            start = self.mav.location()
            self.progress("start=%s" % str(start))
            (t_lat, t_lon) = mavextra.gps_offset(start.lat, start.lng, 10, 20)
            t_alt = 0

            self.progress("loc %f %f %f" % (start.lat, start.lng, start.alt))
            self.progress("targetting %f %f %f" % (t_lat, t_lon, t_alt))
            self.do_pitch(despitch)
            self.mav.mav.mount_control_send(
                1, # target system
                1, # target component
                int(t_lat * 1e7), # lat
                int(t_lon * 1e7), # lon
                t_alt * 100, # alt
                0  # save position
            )
            self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)

            # now test RC targetting
            self.progress("Testing mount RC targetting")

            # this is a one-off; ArduCopter *will* time out this directive!
            self.progress("Levelling aircraft")
            self.mav.mav.set_attitude_target_send(
                0, # time_boot_ms
                1, # target sysid
                1, # target compid
                0, # bitmask of things to ignore
                mavextra.euler_to_quat([0, 0, 0]), # att
                0, # roll rate  (rad/s)
                0, # pitch rate (rad/s)
                0, # yaw rate   (rad/s)
                0.5) # thrust, 0 to 1, translated to a climb/descent rate

            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

            try:
                self.context_push()
                self.set_parameters({
                    'RC6_OPTION': 0,
                    'RC11_OPTION': 212,    # MOUNT1_ROLL
                    'RC12_OPTION': 213,    # MOUNT1_PITCH
                    'RC13_OPTION': 214,    # MOUNT1_YAW
                    'RC12_MIN': 1100,
                    'RC12_MAX': 1900,
                    'RC12_TRIM': 1500,
                    'MNT1_PITCH_MIN': -45,
                    'MNT1_PITCH_MAX': 45,
                })
                self.progress("Testing RC angular control")
                # default RC min=1100 max=1900
                self.set_rc_from_map({
                    11: 1500,
                    12: 1500,
                    13: 1500,
                })
                self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.progress("Testing RC input down 1/4 of its range in the output, should be down 1/4 range in output")
                rc12_in = 1400
                rc12_min = 1100 # default
                rc12_max = 1900 # default
                mpitch_min = -45.0
                mpitch_max = 45.0
                expected_pitch = (float(rc12_in-rc12_min)/float(rc12_max-rc12_min) * (mpitch_max-mpitch_min)) + mpitch_min
                self.progress("expected mount pitch: %f" % expected_pitch)
                if expected_pitch != -11.25:
                    raise NotAchievedException("Calculation wrong - defaults changed?!")
                self.set_rc(12, rc12_in)
                self.test_mount_pitch(-11.25, 0.01, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.set_rc(12, 1800)
                self.test_mount_pitch(33.75, 0.01, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.set_rc_from_map({
                    11: 1500,
                    12: 1500,
                    13: 1500,
                })

                try:
                    self.context_push()
                    self.set_parameters({
                        "RC12_MIN": 1000,
                        "RC12_MAX": 2000,
                        "MNT1_PITCH_MIN": -90,
                        "MNT1_PITCH_MAX": 10,
                    })
                    self.set_rc(12, 1000)
                    self.test_mount_pitch(-90.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                    self.set_rc(12, 2000)
                    self.test_mount_pitch(10.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                    self.set_rc(12, 1500)
                    self.test_mount_pitch(-40.00, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                finally:
                    self.context_pop()

                self.set_rc(12, 1500)

                self.progress("Testing RC rate control")
                self.set_parameter('MNT1_RC_RATE', 10)
                self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.set_rc(12, 1300)
                self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(-20, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.set_rc(12, 1700)
                self.test_mount_pitch(-15, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(-10, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(-5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
                self.test_mount_pitch(5, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

                self.progress("Reverting to angle mode")
                self.set_parameter('MNT1_RC_RATE', 0)
                self.set_rc(12, 1500)
                self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

                self.context_pop()

            except Exception as e:
                self.print_exception_caught(e)
                self.context_pop()
                raise e

            self.progress("Testing mount ROI behaviour")
            self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)
            start = self.mav.location()
            self.progress("start=%s" % str(start))
            (roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
                                                     start.lng,
                                                     10,
                                                     20)
            roi_alt = 0
            self.progress("Using MAV_CMD_DO_SET_ROI_LOCATION")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_LOCATION,
                         0,
                         0,
                         0,
                         0,
                         roi_lat,
                         roi_lon,
                         roi_alt,
                         )
            self.test_mount_pitch(-52, 5, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)

            self.progress("Using MAV_CMD_DO_SET_ROI_NONE")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_NONE,
                         0,
                         0,
                         0,
                         0,
                         0,
                         0,
                         0,
                         )
            self.test_mount_pitch(0, 1, mavutil.mavlink.MAV_MOUNT_MODE_RC_TARGETING)

            start = self.mav.location()
            (roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
                                                     start.lng,
                                                     -100,
                                                     -200)
            roi_alt = 0
            self.progress("Using MAV_CMD_DO_SET_ROI")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI,
                         0,
                         0,
                         0,
                         0,
                         roi_lat,
                         roi_lon,
                         roi_alt,
                         )
            self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)

            start = self.mav.location()
            (roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
                                                     start.lng,
                                                     -100,
                                                     -200)
            roi_alt = 0
            self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT)")
            self.run_cmd_int(
                mavutil.mavlink.MAV_CMD_DO_SET_ROI,
                0,
                0,
                0,
                0,
                int(roi_lat*1e7),
                int(roi_lon*1e7),
                roi_alt,
                frame=mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
            )
            self.test_mount_pitch(-7.5, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT)
            self.progress("Using MAV_CMD_DO_SET_ROI (COMMAND_INT), absolute-alt-frame")
            # this is pointing essentially straight down
            self.run_cmd_int(
                mavutil.mavlink.MAV_CMD_DO_SET_ROI,
                0,
                0,
                0,
                0,
                int(roi_lat*1e7),
                int(roi_lon*1e7),
                roi_alt,
                frame=mavutil.mavlink.MAV_FRAME_GLOBAL,
            )
            self.test_mount_pitch(-70, 1, mavutil.mavlink.MAV_MOUNT_MODE_GPS_POINT, hold=2)

            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
            self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)

            self.progress("Testing mount roi-sysid behaviour")
            self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
            start = self.mav.location()
            self.progress("start=%s" % str(start))
            (roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
                                                     start.lng,
                                                     10,
                                                     20)
            roi_alt = 0
            self.progress("Using MAV_CMD_DO_SET_ROI_SYSID")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI_SYSID,
                         self.mav.source_system,
                         0,
                         0,
                         0,
                         0,
                         0,
                         0,
                         )
            self.mav.mav.global_position_int_send(
                0, # time boot ms
                int(roi_lat * 1e7),
                int(roi_lon * 1e7),
                0 * 1000, # mm alt amsl
                0 * 1000, # relalt mm UP!
                0, # vx
                0, # vy
                0, # vz
                0 # heading
            )
            self.test_mount_pitch(-89, 5, mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET, hold=2)

            self.mav.mav.global_position_int_send(
                0, # time boot ms
                int(roi_lat * 1e7),
                int(roi_lon * 1e7),
                670 * 1000, # mm alt amsl
                100 * 1000, # mm UP!
                0, # vx
                0, # vy
                0, # vz
                0 # heading
            )
            self.test_mount_pitch(68, 5, mavutil.mavlink.MAV_MOUNT_MODE_SYSID_TARGET, hold=2)

            self.set_mount_mode(mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)
            self.test_mount_pitch(0, 0.1, mavutil.mavlink.MAV_MOUNT_MODE_NEUTRAL)

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        self.mav.mav.srcSystem = old_srcSystem
        self.disarm_vehicle(force=True)
        self.reboot_sitl() # to handle MNT1_TYPE changing

        if ex is not None:
            raise ex

    def MountYawVehicleForMountROI(self):
        '''Test Camera/Antenna Mount vehicle yawing for ROI'''
        self.context_push()

        self.set_parameter("SYSID_MYGCS", self.mav.source_system)
        yaw_servo = 7
        self.setup_servo_mount(yaw_servo=yaw_servo)
        self.reboot_sitl() # to handle MNT1_TYPE changing

        self.progress("checking ArduCopter yaw-aircraft-for-roi")
        ex = None
        try:
            self.takeoff(20, mode='GUIDED')

            m = self.mav.recv_match(type='VFR_HUD', blocking=True)
            self.progress("current heading %u" % m.heading)
            self.set_parameter("SERVO%u_FUNCTION" % yaw_servo, 0) # yaw
            self.progress("Waiting for check_servo_map to do its job")
            self.delay_sim_time(5)
            self.progress("Pointing North")
            self.guided_achieve_heading(0)
            self.delay_sim_time(5)
            start = self.mav.location()
            (roi_lat, roi_lon) = mavextra.gps_offset(start.lat,
                                                     start.lng,
                                                     -100,
                                                     -100)
            roi_alt = 0
            self.progress("Using MAV_CMD_DO_SET_ROI")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI,
                         0,
                         0,
                         0,
                         0,
                         roi_lat,
                         roi_lon,
                         roi_alt,
                         )

            self.progress("Waiting for vehicle to point towards ROI")
            self.wait_heading(225, timeout=600, minimum_duration=2)

            # the following numbers are 1-degree-latitude and
            # 0-degrees longitude - just so that we start to
            # really move a lot.
            there = mavutil.location(1, 0, 0, 0)

            self.progress("Starting to move")
            self.mav.mav.set_position_target_global_int_send(
                0, # timestamp
                1, # target system_id
                1, # target component id
                mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT,
                MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt
                there.lat, # lat
                there.lng, # lon
                there.alt, # alt
                0, # vx
                0, # vy
                0, # vz
                0, # afx
                0, # afy
                0, # afz
                0, # yaw
                0, # yawrate
            )

            self.progress("Starting to move changes the target")
            bearing = self.bearing_to(there)
            self.wait_heading(bearing, timeout=600, minimum_duration=2)

            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SET_ROI,
                         0,
                         0,
                         0,
                         0,
                         roi_lat,
                         roi_lon,
                         roi_alt,
                         )

            self.progress("Wait for vehicle to point sssse due to moving")
            self.wait_heading(170, timeout=600, minimum_duration=1)

            self.do_RTL()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        if ex is not None:
            raise ex

    def ThrowMode(self):
        '''Fly Throw Mode'''
        # test boomerang mode:
        self.progress("Throwing vehicle away")
        self.set_parameters({
            "THROW_NEXTMODE": 6,
            "SIM_SHOVE_Z": -30,
            "SIM_SHOVE_X": -20,
        })
        self.change_mode('THROW')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        try:
            self.set_parameter("SIM_SHOVE_TIME", 500)
        except ValueError:
            # the shove resets this to zero
            pass

        tstart = self.get_sim_time()
        self.wait_mode('RTL')
        max_good_tdelta = 15
        tdelta = self.get_sim_time() - tstart
        self.progress("Vehicle in RTL")
        self.wait_rtl_complete()
        self.progress("Vehicle disarmed")
        if tdelta > max_good_tdelta:
            raise NotAchievedException("Took too long to enter RTL: %fs > %fs" %
                                       (tdelta, max_good_tdelta))
        self.progress("Vehicle returned")

    def hover_and_check_matched_frequency_with_fft(self, dblevel=-15, minhz=200, maxhz=300, peakhz=None,
                                                   reverse=None, takeoff=True):
        # find a motor peak
        if takeoff:
            self.takeoff(10, mode="ALT_HOLD")

        tstart, tend, hover_throttle = self.hover_for_interval(15)
        self.do_RTL()

        psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)

        # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
        freq = psd["F"][numpy.argmax(psd["X"][minhz:maxhz]) + minhz] * (1000. / 1024.)
        peakdb = numpy.amax(psd["X"][minhz:maxhz])
        if peakdb < dblevel or (peakhz is not None and abs(freq - peakhz) / peakhz > 0.05):
            if reverse is not None:
                self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
            else:
                raise NotAchievedException("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
        else:
            if reverse is not None:
                raise NotAchievedException(
                    "Detected motor peak at %fHz, throttle %f%%, %fdB" %
                    (freq, hover_throttle, peakdb))
            else:
                self.progress("Detected motor peak at %fHz, throttle %f%%, %fdB" %
                              (freq, hover_throttle, peakdb))

        return freq, hover_throttle, peakdb

    def DynamicNotches(self):
        """Use dynamic harmonic notch to control motor noise."""
        self.progress("Flying with dynamic notches")
        self.context_push()

        ex = None
        try:
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 0,
                "INS_GYRO_FILTER": 100, # set the gyro filter high so we can observe behaviour
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_VIB_MOT_MAX": 350,
                "SIM_GYR1_RND": 20,
            })
            self.reboot_sitl()

            self.takeoff(10, mode="ALT_HOLD")

            # find a motor peak
            freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 200, 300)

            # now add a dynamic notch and check that the peak is squashed
            self.set_parameters({
                "INS_LOG_BAT_OPT": 2,
                "INS_HNTCH_ENABLE": 1,
                "INS_HNTCH_FREQ": freq,
                "INS_HNTCH_REF": hover_throttle/100.,
                "INS_HNTCH_HMNCS": 5, # first and third harmonic
                "INS_HNTCH_ATT": 50,
                "INS_HNTCH_BW": freq/2,
            })
            self.reboot_sitl()

            freq, hover_throttle, peakdb1 = self.hover_and_check_matched_frequency_with_fft(-10, 20, 350, reverse=True)

            # now add double dynamic notches and check that the peak is squashed
            self.set_parameter("INS_HNTCH_OPTS", 1)
            self.reboot_sitl()

            freq, hover_throttle, peakdb2 = self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)

            # double-notch should do better, but check for within 5%
            if peakdb2 * 1.05 > peakdb1:
                raise NotAchievedException(
                    "Double-notch peak was higher than single-notch peak %fdB > %fdB" %
                    (peakdb2, peakdb1))

            # now add triple dynamic notches and check that the peak is squashed
            self.set_parameter("INS_HNTCH_OPTS", 16)
            self.reboot_sitl()

            freq, hover_throttle, peakdb2 = self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)

            # triple-notch should do better, but check for within 5%
            if peakdb2 * 1.05 > peakdb1:
                raise NotAchievedException(
                    "Triple-notch peak was higher than single-notch peak %fdB > %fdB" %
                    (peakdb2, peakdb1))

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        if ex is not None:
            raise ex

    def DynamicRpmNotches(self):
        """Use dynamic harmonic notch to control motor noise via ESC telemetry."""
        self.progress("Flying with ESC telemetry driven dynamic notches")

        self.set_rc_default()
        self.set_parameters({
            "AHRS_EKF_TYPE": 10,
            "INS_LOG_BAT_MASK": 3,
            "INS_LOG_BAT_OPT": 0,
            "INS_GYRO_FILTER": 100, # set gyro filter high so we can observe behaviour
            "LOG_BITMASK": 958,
            "LOG_DISARMED": 0,
            "SIM_VIB_MOT_MAX": 350,
            "SIM_GYR1_RND": 20,
            "SIM_ESC_TELEM": 1
        })
        self.reboot_sitl()

        self.takeoff(10, mode="ALT_HOLD")

        # find a motor peak
        freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 200, 300)

        # now add a dynamic notch and check that the peak is squashed
        self.set_parameters({
            "INS_LOG_BAT_OPT": 2,
            "INS_HNTCH_ENABLE": 1,
            "INS_HNTCH_FREQ": 80,
            "INS_HNTCH_REF": 1.0,
            "INS_HNTCH_HMNCS": 5, # first and third harmonic
            "INS_HNTCH_ATT": 50,
            "INS_HNTCH_BW": 40,
            "INS_HNTCH_MODE": 3,
        })
        self.reboot_sitl()

        freq, hover_throttle, peakdb1 = self.hover_and_check_matched_frequency_with_fft(-10, 20, 350, reverse=True)

        # now add notch-per motor and check that the peak is squashed
        self.set_parameter("INS_HNTCH_OPTS", 2)
        self.reboot_sitl()

        freq, hover_throttle, peakdb2 = self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)

        # notch-per-motor should do better, but check for within 5%
        if peakdb2 * 1.05 > peakdb1:
            raise NotAchievedException(
                "Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" %
                (peakdb2, peakdb1))

        # Now do it again for an octacopter
        self.context_push()
        ex = None
        try:
            self.progress("Flying Octacopter with ESC telemetry driven dynamic notches")
            self.set_parameter("INS_HNTCH_OPTS", 0)
            self.customise_SITL_commandline(
                [],
                defaults_filepath=','.join(self.model_defaults_filepath("octa")),
                model="octa"
            )
            freq, hover_throttle, peakdb1 = self.hover_and_check_matched_frequency_with_fft(-10, 20, 350, reverse=True)

            # now add notch-per motor and check that the peak is squashed
            self.set_parameter("INS_HNTCH_HMNCS", 1)
            self.set_parameter("INS_HNTCH_OPTS", 2)
            self.reboot_sitl()

            freq, hover_throttle, peakdb2 = self.hover_and_check_matched_frequency_with_fft(-15, 20, 350, reverse=True)

            # notch-per-motor should do better, but check for within 5%
            if peakdb2 * 1.05 > peakdb1:
                raise NotAchievedException(
                    "Notch-per-motor peak was higher than single-notch peak %fdB > %fdB" %
                    (peakdb2, peakdb1))
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def hover_and_check_matched_frequency(self, dblevel=-15, minhz=200, maxhz=300, fftLength=32, peakhz=None):
        '''do a simple up-and-down test flight with current vehicle state.
        Check that the onboard filter comes up with the same peak-frequency that
        post-processing does.'''
        self.takeoff(10, mode="ALT_HOLD")
        tstart, tend, hover_throttle = self.hover_for_interval(15)
        self.do_RTL()

        psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)

        # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
        scale = 1000. / 1024.
        sminhz = int(minhz * scale)
        smaxhz = int(maxhz * scale)
        freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
        peakdb = numpy.amax(psd["X"][sminhz:smaxhz])

        self.progress("Post-processing FFT detected motor peak at %fHz/%fdB, throttle %f%%" %
                      (freq, peakdb, hover_throttle))

        if peakdb < dblevel:
            raise NotAchievedException(
                "Detected motor peak not strong enough; want=%fdB got=%fdB" %
                (peakdb, dblevel))

        # caller can supply an expected frequency:
        if peakhz is not None and abs(freq - peakhz) / peakhz > 0.05:
            raise NotAchievedException(
                "Post-processing detected motor peak at wrong frequency; want=%fHz got=%fHz" %
                (peakhz, freq))

        # we have a peak make sure that the onboard filter detected
        # something close logging is at 10Hz

        # peak within resolution of FFT length
        pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend)
        self.progress("Onboard-FFT detected motor peak at %fHz (processed %d FTN1 messages)" % (pkAvg, nmessages))

        # accuracy is determined by sample rate and fft length, given
        # our use of quinn we could probably use half of this
        freqDelta = 1000. / fftLength
        if abs(pkAvg - freq) > freqDelta:
            raise NotAchievedException(
                "post-processed FFT does not  agree with onboard filter on peak frequency; onboard=%fHz post-processed=%fHz/%fdB" %  # noqa
                (pkAvg, freq, dblevel)
            )
        return freq

    def extract_median_FTN1_PkAvg_from_current_onboard_log(self, tstart, tend):
        '''extracts FTN1 messages from log, returns median of pkAvg values and
        the number of samples'''
        mlog = self.dfreader_for_current_onboard_log()
        freqs = []
        while True:
            m = mlog.recv_match(
                type='FTN1',
                blocking=False,
                condition="FTN1.TimeUS>%u and FTN1.TimeUS<%u" % (tstart * 1.0e6, tend * 1.0e6))
            if m is None:
                break
            freqs.append(m.PkAvg)
        return numpy.median(numpy.asarray(freqs)), len(freqs)

    def ThrottleGainBoost(self):
        """Use PD and Angle P boost for anti-gravity."""
        # basic gyro sample rate test
        self.progress("Flying with Throttle-Gain Boost")
        self.context_push()

        ex = None
        try:
            # magic tridge EKF type that dramatically speeds up the test
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_FAST_SAMPLE": 0,
                "LOG_BITMASK": 959,
                "LOG_DISARMED": 0,
                "ATC_THR_G_BOOST": 5.0,
            })

            self.reboot_sitl()

            self.takeoff(10, mode="ALT_HOLD")
            hover_time = 15
            self.progress("Hovering for %u seconds" % hover_time)
            tstart = self.get_sim_time()
            while self.get_sim_time_cached() < tstart + hover_time:
                self.mav.recv_match(type='ATTITUDE', blocking=True)

            # fly fast forrest!
            self.set_rc(3, 1900)
            self.set_rc(2, 1200)
            self.wait_groundspeed(5, 1000)
            self.set_rc(3, 1500)
            self.set_rc(2, 1500)

            self.do_RTL()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # must reboot after we move away from EKF type 10 to EKF2 or EKF3
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def test_gyro_fft_harmonic(self, averaging):
        """Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic."""
        # basic gyro sample rate test
        self.progress("Flying with gyro FFT harmonic - Gyro sample rate")
        self.context_push()
        ex = None
        # we are dealing with probabalistic scenarios involving threads
        try:
            self.start_subtest("Hover to calculate approximate hover frequency")
            # magic tridge EKF type that dramatically speeds up the test
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 0,
                "INS_GYRO_FILTER": 100,
                "INS_FAST_SAMPLE": 0,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_DRIFT_SPEED": 0,
                "SIM_DRIFT_TIME": 0,
                "FFT_THR_REF": self.get_parameter("MOT_THST_HOVER"),
                "SIM_GYR1_RND": 20,  # enable a noisy gyro
            })

            # motor peak enabling FFT will also enable the arming
            # check, self-testing the functionality
            self.set_parameters({
                "FFT_ENABLE": 1,
                "FFT_MINHZ": 50,
                "FFT_MAXHZ": 450,
                "FFT_SNR_REF": 10,
            })
            if averaging:
                self.set_parameter("FFT_NUM_FRAMES", 8)

            # Step 1: inject actual motor noise and use the FFT to track it
            self.set_parameters({
                "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz
                "FFT_WINDOW_SIZE": 64,
                "FFT_WINDOW_OLAP": 0.75,
            })

            self.reboot_sitl()
            freq = self.hover_and_check_matched_frequency(-15, 100, 250, 64)

            # Step 2: add a second harmonic and check the first is still tracked
            self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency "
                               "and check the right harmonic is found")
            self.set_parameters({
                "SIM_VIB_FREQ_X": freq * 2,
                "SIM_VIB_FREQ_Y": freq * 2,
                "SIM_VIB_FREQ_Z": freq * 2,
                "SIM_VIB_MOT_MULT": 0.25,  # halve the motor noise so that the higher harmonic dominates
            })
            self.reboot_sitl()

            self.hover_and_check_matched_frequency(-15, 100, 250, 64, None)

            # Step 3: switch harmonics mid flight and check for tracking
            self.start_subtest("Switch harmonics mid flight and check the right harmonic is found")
            self.set_parameter("FFT_HMNC_PEAK", 0)
            self.reboot_sitl()

            self.takeoff(10, mode="ALT_HOLD")

            hover_time = 10
            tstart, tend_unused, hover_throttle = self.hover_for_interval(hover_time)

            self.progress("Switching motor vibration multiplier")
            self.set_parameter("SIM_VIB_MOT_MULT", 5.0)

            tstart_unused, tend, hover_throttle = self.hover_for_interval(hover_time)

            self.do_RTL()

            # peak within resolution of FFT length, the highest energy peak switched but our detection should not
            pkAvg, nmessages = self.extract_median_FTN1_PkAvg_from_current_onboard_log(tstart, tend)

            freqDelta = 1000. / self.get_parameter("FFT_WINDOW_SIZE")

            if abs(pkAvg - freq) > freqDelta:
                raise NotAchievedException("FFT did not detect a harmonic motor peak, found %f, wanted %f" % (pkAvg, freq))

            # Step 4: dynamic harmonic
            self.start_subtest("Enable dynamic harmonics and make sure both frequency peaks are attenuated")
            # find a motor peak
            freq, hover_throttle, peakdb = self.hover_and_check_matched_frequency_with_fft(-15, 100, 350)

            # now add a dynamic notch and check that the peak is squashed
            self.set_parameters({
                "INS_LOG_BAT_OPT": 2,
                "INS_HNTCH_ENABLE": 1,
                "INS_HNTCH_HMNCS": 1,
                "INS_HNTCH_MODE": 4,
                "INS_HNTCH_FREQ": freq,
                "INS_HNTCH_REF": hover_throttle/100.0,
                "INS_HNTCH_ATT": 100,
                "INS_HNTCH_BW": freq/2,
                "INS_HNTCH_OPTS": 3,
            })
            self.reboot_sitl()

            # 5db is far in excess of the attenuation that the double dynamic-harmonic notch is able
            # to provide (-7dB on average), but without the notch the peak is around 20dB so still a safe test
            self.hover_and_check_matched_frequency_with_fft(5, 100, 350, reverse=True)

            self.set_parameters({
                "SIM_VIB_FREQ_X": 0,
                "SIM_VIB_FREQ_Y": 0,
                "SIM_VIB_FREQ_Z": 0,
                "SIM_VIB_MOT_MULT": 1.0,
            })
            # prevent update parameters from messing with the settings when we pop the context
            self.set_parameter("FFT_ENABLE", 0)
            self.reboot_sitl()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # need a final reboot because weird things happen to your
        # vehicle state when switching back from EKF type 10!
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def GyroFFTHarmonic(self):
        """Use dynamic harmonic notch to control motor noise with harmonic matching of the first harmonic."""
        self.test_gyro_fft_harmonic(False)

    def GyroFFTContinuousAveraging(self):
        """Use dynamic harmonic notch with FFT averaging to control motor noise
           with harmonic matching of the first harmonic."""
        self.test_gyro_fft_harmonic(True)

    def GyroFFT(self):
        """Use dynamic harmonic notch to control motor noise."""
        # basic gyro sample rate test
        self.progress("Flying with gyro FFT - Gyro sample rate")
        self.context_push()

        ex = None
        try:
            # magic tridge EKF type that dramatically speeds up the test
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 4,
                "INS_GYRO_FILTER": 100,
                "INS_FAST_SAMPLE": 0,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_DRIFT_SPEED": 0,
                "SIM_DRIFT_TIME": 0,
                "SIM_GYR1_RND": 20,  # enable a noisy motor peak
            })
            # enabling FFT will also enable the arming check,
            # self-testing the functionality
            self.set_parameters({
                "FFT_ENABLE": 1,
                "FFT_MINHZ": 50,
                "FFT_MAXHZ": 450,
                "FFT_SNR_REF": 10,
                "FFT_WINDOW_SIZE": 128,
                "FFT_WINDOW_OLAP": 0.75,
                "FFT_SAMPLE_MODE": 0,
            })

            # Step 1: inject a very precise noise peak at 250hz and make sure the in-flight fft
            # can detect it really accurately. For a 128 FFT the frequency resolution is 8Hz so
            # a 250Hz peak should be detectable within 5%
            self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise")
            self.set_parameters({
                "SIM_VIB_FREQ_X": 250,
                "SIM_VIB_FREQ_Y": 250,
                "SIM_VIB_FREQ_Z": 250,
            })

            self.reboot_sitl()

            # find a motor peak
            self.hover_and_check_matched_frequency(-15, 100, 350, 128, 250)

            # Step 1b: run the same test with an FFT length of 256 which is needed to flush out a
            # whole host of bugs related to uint8_t. This also tests very accurately the frequency resolution
            self.set_parameter("FFT_WINDOW_SIZE", 256)
            self.start_subtest("Inject noise at 250Hz and check the FFT can find the noise")

            self.reboot_sitl()

            # find a motor peak
            self.hover_and_check_matched_frequency(-15, 100, 350, 256, 250)
            self.set_parameter("FFT_WINDOW_SIZE", 128)

            # Step 2: inject actual motor noise and use the standard length FFT to track it
            self.start_subtest("Hover and check that the FFT can find the motor noise")
            self.set_parameters({
                "SIM_VIB_FREQ_X": 0,
                "SIM_VIB_FREQ_Y": 0,
                "SIM_VIB_FREQ_Z": 0,
                "SIM_VIB_MOT_MAX": 250,  # gives a motor peak at about 175Hz
                "FFT_WINDOW_SIZE": 32,
                "FFT_WINDOW_OLAP": 0.5,
            })

            self.reboot_sitl()
            freq = self.hover_and_check_matched_frequency(-15, 100, 250, 32)

            self.set_parameter("SIM_VIB_MOT_MULT", 1.)

            # Step 3: add a FFT dynamic notch and check that the peak is squashed
            self.start_subtest("Add a dynamic notch, hover and check that the noise peak is now gone")
            self.set_parameters({
                "INS_LOG_BAT_OPT": 2,
                "INS_HNTCH_ENABLE": 1,
                "INS_HNTCH_FREQ": freq,
                "INS_HNTCH_REF": 1.0,
                "INS_HNTCH_ATT": 50,
                "INS_HNTCH_BW": freq/2,
                "INS_HNTCH_MODE": 4,
            })
            self.reboot_sitl()

            # do test flight:
            self.takeoff(10, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(15)
            # fly fast forrest!
            self.set_rc(3, 1900)
            self.set_rc(2, 1200)
            self.wait_groundspeed(5, 1000)
            self.set_rc(3, 1500)
            self.set_rc(2, 1500)
            self.do_RTL()

            psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)

            # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
            scale = 1000. / 1024.
            sminhz = int(100 * scale)
            smaxhz = int(350 * scale)
            freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
            peakdb = numpy.amax(psd["X"][sminhz:smaxhz])
            if peakdb < 0:
                self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
            else:
                raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb))

            # Step 4: loop sample rate test with larger window
            self.start_subtest("Hover and check that the FFT can find the motor noise when running at fast loop rate")
            # we are limited to half the loop rate for frequency detection
            self.set_parameters({
                "FFT_MAXHZ": 185,
                "INS_LOG_BAT_OPT": 4,
                "SIM_VIB_MOT_MAX": 220,
                "FFT_WINDOW_SIZE": 64,
                "FFT_WINDOW_OLAP": 0.75,
                "FFT_SAMPLE_MODE": 1,
            })
            self.reboot_sitl()

            # do test flight:
            self.takeoff(10, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(15)
            self.do_RTL()

            # why are we not checking the results from that flight? -pb20220613

            # prevent update parameters from messing with the settings
            # when we pop the context
            self.set_parameter("FFT_ENABLE", 0)
            self.reboot_sitl()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # must reboot after we move away from EKF type 10 to EKF2 or EKF3
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def GyroFFTAverage(self):
        """Use dynamic harmonic notch to control motor noise setup via FFT averaging."""
        # basic gyro sample rate test
        self.progress("Flying with gyro FFT harmonic - Gyro sample rate")
        self.context_push()
        ex = None
        try:
            # Step 1
            self.start_subtest("Hover to calculate approximate hover frequency and see that it is tracked")
            # magic tridge EKF type that dramatically speeds up the test
            self.set_parameters({
                "INS_HNTCH_ATT": 100,
                "AHRS_EKF_TYPE": 10,
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 2,
                "INS_GYRO_FILTER": 100,
                "INS_FAST_SAMPLE": 0,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_DRIFT_SPEED": 0,
                "SIM_DRIFT_TIME": 0,
                "SIM_GYR1_RND": 20,  # enable a noisy gyro
            })
            # motor peak enabling FFT will also enable the arming
            # check, self-testing the functionality
            self.set_parameters({
                "FFT_ENABLE": 1,
                "FFT_WINDOW_SIZE": 64,  # not the default, but makes the test more reliable
                "FFT_SNR_REF": 10,
                "FFT_MINHZ": 80,
                "FFT_MAXHZ": 450,
            })

            # Step 1: inject actual motor noise and use the FFT to track it
            self.set_parameters({
                "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 175Hz
                "RC7_OPTION" : 162,   # FFT tune
            })

            self.reboot_sitl()

            # hover and engage FFT tracker
            self.takeoff(10, mode="ALT_HOLD")

            hover_time = 60

            # start the tune
            self.set_rc(7, 2000)

            tstart, tend, hover_throttle = self.hover_for_interval(hover_time)

            # finish the tune
            self.set_rc(7, 1000)

            psd = self.mavfft_fttd(1, 0, tstart * 1.0e6, tend * 1.0e6)

            # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
            freq = psd["F"][numpy.argmax(psd["X"][50:450]) + 50] * (1000. / 1024.)

            detected_ref = self.get_parameter("INS_HNTCH_REF")
            detected_freq = self.get_parameter("INS_HNTCH_FREQ")
            self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref))

            # approximate the scaled frequency
            scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq

            # Check we matched
            if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05:
                raise NotAchievedException("Detected frequency %fHz did not match required %fHz" %
                                           (scaled_freq_at_hover, freq))

            if self.get_parameter("INS_HNTCH_ENABLE") != 1:
                raise NotAchievedException("Harmonic notch was not enabled")

            # Step 2: now rerun the test and check that the peak is squashed
            self.start_subtest("Verify that noise is suppressed by the harmonic notch")
            self.hover_and_check_matched_frequency_with_fft(0, 100, 350, reverse=True, takeoff=False)

            # reset notch to defaults
            self.set_parameters({
                "INS_HNTCH_HMNCS": 3.0,
                "INS_HNTCH_ENABLE": 0.0,
                "INS_HNTCH_REF": 0.0,
                "INS_HNTCH_FREQ": 80,
                "INS_HNTCH_BW": 40,
                "INS_HNTCH_FM_RAT": 1.0
            })

            # Step 3: add a second harmonic and check the first is still tracked
            self.start_subtest("Add a fixed frequency harmonic at twice the hover frequency "
                               "and check the right harmonic is found")
            self.set_parameters({
                "SIM_VIB_FREQ_X": detected_freq * 2,
                "SIM_VIB_FREQ_Y": detected_freq * 2,
                "SIM_VIB_FREQ_Z": detected_freq * 2,
                "SIM_VIB_MOT_MULT": 0.25,  # halve the motor noise so that the higher harmonic dominates
            })
            self.reboot_sitl()

            # hover and engage FFT tracker
            self.takeoff(10, mode="ALT_HOLD")

            hover_time = 60

            # start the tune
            self.set_rc(7, 2000)

            tstart, tend, hover_throttle = self.hover_for_interval(hover_time)

            # finish the tune
            self.set_rc(7, 1000)

            self.do_RTL()

            detected_ref = self.get_parameter("INS_HNTCH_REF")
            detected_freq = self.get_parameter("INS_HNTCH_FREQ")
            self.progress("FFT detected parameters were %fHz, ref %f" % (detected_freq, detected_ref))

            # approximate the scaled frequency
            scaled_freq_at_hover = math.sqrt((hover_throttle / 100.) / detected_ref) * detected_freq

            # Check we matched
            if abs(scaled_freq_at_hover - freq) / scaled_freq_at_hover > 0.05:
                raise NotAchievedException("Detected frequency %fHz did not match required %fHz" %
                                           (scaled_freq_at_hover, freq))

            if self.get_parameter("INS_HNTCH_ENABLE") != 1:
                raise NotAchievedException("Harmonic notch was not enabled")

            self.set_parameters({
                "SIM_VIB_FREQ_X": 0,
                "SIM_VIB_FREQ_Y": 0,
                "SIM_VIB_FREQ_Z": 0,
                "SIM_VIB_MOT_MULT": 1.0,
                "INS_HNTCH_HMNCS": 3.0,
                "INS_HNTCH_ENABLE": 0.0,
                "INS_HNTCH_REF": 0.0,
                "INS_HNTCH_FREQ": 80,
                "INS_HNTCH_BW": 40,
                "INS_HNTCH_FM_RAT": 1.0
            })
            # prevent update parameters from messing with the settings when we pop the context
            self.set_parameter("FFT_ENABLE", 0)
            self.reboot_sitl()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # need a final reboot because weird things happen to your
        # vehicle state when switching back from EKF type 10!
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def GyroFFTPostFilter(self):
        """Use FFT-driven dynamic harmonic notch to control post-RPM filter motor noise."""
        # basic gyro sample rate test
        self.progress("Flying with gyro FFT post-filter supression - Gyro sample rate")
        self.context_push()
        ex = None
        try:
            # This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz
            # we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter
            # FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed
            # due to too much noise being present
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,    # magic tridge EKF type that dramatically speeds up the test
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 4,
                "INS_GYRO_FILTER": 100,
                "INS_FAST_SAMPLE": 3,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_DRIFT_SPEED": 0,
                "SIM_DRIFT_TIME": 0,
                "SIM_GYR1_RND": 20,     # enable a noisy gyro
                "INS_HNTCH_ENABLE": 1,
                "INS_HNTCH_FREQ": 80,
                "INS_HNTCH_REF": 1.0,
                "INS_HNTCH_HMNCS": 1,   # first harmonic
                "INS_HNTCH_ATT": 50,
                "INS_HNTCH_BW": 30,
                "INS_HNTCH_MODE": 3,    # ESC telemetry
                "INS_HNTCH_OPTS": 2,    # notch-per-motor
                "INS_HNTC2_ENABLE": 1,
                "INS_HNTC2_FREQ": 80,
                "INS_HNTC2_REF": 1.0,
                "INS_HNTC2_HMNCS": 1,
                "INS_HNTC2_ATT": 50,
                "INS_HNTC2_BW": 40,
                "INS_HNTC2_MODE": 4,    # in-flight FFT
                "INS_HNTC2_OPTS": 18,   # triple-notch, notch-per-FFT peak
                "FFT_ENABLE": 1,
                "FFT_WINDOW_SIZE": 64,  # not the default, but makes the test more reliable
                "FFT_OPTIONS": 1,
                "FFT_MINHZ": 50,
                "FFT_MAXHZ": 450,
                "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz
                "SIM_VIB_FREQ_X": 250,  # create another peak at 250hz
                "SIM_VIB_FREQ_Y": 250,
                "SIM_VIB_FREQ_Z": 250,
                "SIM_GYR_FILE_RW": 2,   # write data to a file
            })
            self.reboot_sitl()

            # do test flight:
            self.takeoff(10, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(60)
            # fly fast forrest!
            self.set_rc(3, 1900)
            self.set_rc(2, 1200)
            self.wait_groundspeed(5, 1000)
            self.set_rc(3, 1500)
            self.set_rc(2, 1500)
            self.do_RTL()

            psd = self.mavfft_fttd(1, 2, tstart * 1.0e6, tend * 1.0e6)

            # batch sampler defaults give 1024 fft and sample rate of 1kz so roughly 1hz/bin
            scale = 1000. / 1024.
            sminhz = int(100 * scale)
            smaxhz = int(350 * scale)
            freq = psd["F"][numpy.argmax(psd["X"][sminhz:smaxhz]) + sminhz]
            peakdb = numpy.amax(psd["X"][sminhz:smaxhz])
            if peakdb < -5:
                self.progress("Did not detect a motor peak, found %fHz at %fdB" % (freq, peakdb))
            else:
                raise NotAchievedException("Detected %fHz motor peak at %fdB" % (freq, peakdb))

            # prevent update parameters from messing with the settings when we pop the context
            self.set_parameters({
                "SIM_VIB_FREQ_X": 0,
                "SIM_VIB_FREQ_Y": 0,
                "SIM_VIB_FREQ_Z": 0,
                "SIM_VIB_MOT_MULT": 1.0,
                "SIM_GYR_FILE_RW": 0,  # stop writing data
                "FFT_ENABLE": 0,
            })
            self.reboot_sitl()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # need a final reboot because weird things happen to your
        # vehicle state when switching back from EKF type 10!
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def GyroFFTMotorNoiseCheck(self):
        """Use FFT to detect post-filter motor noise."""
        # basic gyro sample rate test
        self.progress("Flying with FFT motor-noise detection - Gyro sample rate")
        self.context_push()
        ex = None
        try:
            # This set of parameters creates two noise peaks one at the motor frequency and one at 250Hz
            # we then use ESC telemetry to drive the notch to clean up the motor noise and a post-filter
            # FFT notch to clean up the remaining 250Hz. If either notch fails then the test will be failed
            # due to too much noise being present
            self.set_parameters({
                "AHRS_EKF_TYPE": 10,    # magic tridge EKF type that dramatically speeds up the test
                "EK2_ENABLE": 0,
                "EK3_ENABLE": 0,
                "INS_LOG_BAT_MASK": 3,
                "INS_LOG_BAT_OPT": 4,
                "INS_GYRO_FILTER": 100,
                "INS_FAST_SAMPLE": 3,
                "LOG_BITMASK": 958,
                "LOG_DISARMED": 0,
                "SIM_DRIFT_SPEED": 0,
                "SIM_DRIFT_TIME": 0,
                "SIM_GYR1_RND": 200,     # enable a noisy gyro
                "INS_HNTCH_ENABLE": 1,
                "INS_HNTCH_FREQ": 80,
                "INS_HNTCH_REF": 1.0,
                "INS_HNTCH_HMNCS": 1,   # first harmonic
                "INS_HNTCH_ATT": 50,
                "INS_HNTCH_BW": 30,
                "INS_HNTCH_MODE": 3,    # ESC telemetry
                "INS_HNTCH_OPTS": 2,    # notch-per-motor
                "INS_HNTC2_ENABLE": 1,
                "INS_HNTC2_FREQ": 80,
                "INS_HNTC2_REF": 1.0,
                "INS_HNTC2_HMNCS": 1,
                "INS_HNTC2_ATT": 50,
                "INS_HNTC2_BW": 40,
                "INS_HNTC2_MODE": 0,    # istatic notch
                "INS_HNTC2_OPTS": 16,   # triple-notch
                "FFT_ENABLE": 1,
                "FFT_WINDOW_SIZE": 64,  # not the default, but makes the test more reliable
                "FFT_OPTIONS": 3,
                "FFT_MINHZ": 50,
                "FFT_MAXHZ": 450,
                "SIM_VIB_MOT_MAX": 250, # gives a motor peak at about 145Hz
                "SIM_VIB_FREQ_X": 250,  # create another peak at 250hz
                "SIM_VIB_FREQ_Y": 250,
                "SIM_VIB_FREQ_Z": 250,
                "SIM_GYR_FILE_RW": 2,   # write data to a file
            })
            self.reboot_sitl()

            # do test flight:
            self.takeoff(10, mode="ALT_HOLD")
            tstart, tend, hover_throttle = self.hover_for_interval(10)
            self.wait_statustext("Noise ", timeout=20)
            self.set_parameter("SIM_GYR1_RND", 0) # stop noise so that we can get home
            self.do_RTL()

            # prevent update parameters from messing with the settings when we pop the context
            self.set_parameters({
                "SIM_VIB_FREQ_X": 0,
                "SIM_VIB_FREQ_Y": 0,
                "SIM_VIB_FREQ_Z": 0,
                "SIM_VIB_MOT_MULT": 1.0,
                "SIM_GYR_FILE_RW": 0,  # stop writing data
                "FFT_ENABLE": 0,
            })
            self.reboot_sitl()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        # need a final reboot because weird things happen to your
        # vehicle state when switching back from EKF type 10!
        self.reboot_sitl()

        if ex is not None:
            raise ex

    def BrakeMode(self):
        '''Fly Brake Mode'''
        # test brake mode
        self.progress("Testing brake mode")
        self.takeoff(10, mode="LOITER")

        self.progress("Ensuring RC inputs have no effect in brake mode")
        self.change_mode("STABILIZE")
        self.set_rc(3, 1500)
        self.set_rc(2, 1200)
        self.wait_groundspeed(5, 1000)

        self.change_mode("BRAKE")
        self.wait_groundspeed(0, 1)

        self.set_rc(2, 1500)

        self.do_RTL()
        self.progress("Ran brake  mode")

    def fly_guided_move_to(self, destination, timeout=30):
        '''move to mavutil.location location; absolute altitude'''
        tstart = self.get_sim_time()
        self.mav.mav.set_position_target_global_int_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_GLOBAL_INT,
            MAV_POS_TARGET_TYPE_MASK.POS_ONLY | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # mask specifying use-only-lat-lon-alt
            int(destination.lat * 1e7), # lat
            int(destination.lng * 1e7), # lon
            destination.alt, # alt
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )
        while True:
            if self.get_sim_time() - tstart > timeout:
                raise NotAchievedException()
            delta = self.get_distance(self.mav.location(), destination)
            self.progress("delta=%f (want <1)" % delta)
            if delta < 1:
                break

    def AltTypes(self):
        '''Test Different Altitude Types'''
        '''start by disabling GCS failsafe, otherwise we immediately disarm
        due to (apparently) not receiving traffic from the GCS for
        too long.  This is probably a function of --speedup'''

        '''this test flies the vehicle somewhere lower than were it started.
        It then disarms.  It then arms, which should reset home to the
        new, lower altitude.  This delta should be outside 1m but
        within a few metres of the old one.

        '''

        self.install_terrain_handlers_context()

        self.set_parameter("FS_GCS_ENABLE", 0)
        self.change_mode('GUIDED')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        max_initial_home_alt_m = 500
        if m.relative_alt > max_initial_home_alt_m:
            raise NotAchievedException("Initial home alt too high (%fm > %fm)" %
                                       (m.relative_alt*1000, max_initial_home_alt_m*1000))
        orig_home_offset_mm = m.alt - m.relative_alt
        self.user_takeoff(5)

        self.progress("Flying to low position")
        current_alt = self.mav.location().alt
# 10m delta        low_position = mavutil.location(-35.358273, 149.169165, current_alt, 0)
        low_position = mavutil.location(-35.36200016, 149.16415599, current_alt, 0)
        self.fly_guided_move_to(low_position, timeout=240)
        self.change_mode('LAND')
        # expecting home to change when disarmed
        self.wait_landed_and_disarmed()
        # wait a while for home to move (it shouldn't):
        self.delay_sim_time(10)
        m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        new_home_offset_mm = m.alt - m.relative_alt
        home_offset_delta_mm = orig_home_offset_mm - new_home_offset_mm
        self.progress("new home offset: %f delta=%f" %
                      (new_home_offset_mm, home_offset_delta_mm))
        self.progress("gpi=%s" % str(m))
        max_home_offset_delta_mm = 10
        if home_offset_delta_mm > max_home_offset_delta_mm:
            raise NotAchievedException("Large home offset delta: want<%f got=%f" %
                                       (max_home_offset_delta_mm, home_offset_delta_mm))
        self.progress("Ensuring home moves when we arm")
        self.change_mode('GUIDED')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        post_arming_home_offset_mm = m.alt - m.relative_alt
        self.progress("post-arming home offset: %f" % (post_arming_home_offset_mm))
        self.progress("gpi=%s" % str(m))
        min_post_arming_home_offset_delta_mm = -2500
        max_post_arming_home_offset_delta_mm = -4000
        delta_between_original_home_alt_offset_and_new_home_alt_offset_mm = post_arming_home_offset_mm - orig_home_offset_mm
        self.progress("delta=%f-%f=%f" % (
            post_arming_home_offset_mm,
            orig_home_offset_mm,
            delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))
        self.progress("Home moved %fm vertically" % (delta_between_original_home_alt_offset_and_new_home_alt_offset_mm/1000.0))
        if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm > min_post_arming_home_offset_delta_mm:
            raise NotAchievedException(
                "Home did not move vertically on arming: want<=%f got=%f" %
                (min_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))
        if delta_between_original_home_alt_offset_and_new_home_alt_offset_mm < max_post_arming_home_offset_delta_mm:
            raise NotAchievedException(
                "Home moved too far vertically on arming: want>=%f got=%f" %
                (max_post_arming_home_offset_delta_mm, delta_between_original_home_alt_offset_and_new_home_alt_offset_mm))

        self.wait_disarmed()

    def PrecisionLoiterCompanion(self):
        """Use Companion PrecLand backend precision messages to loiter."""

        self.context_push()

        ex = None
        try:
            self.set_parameters({
                "PLND_ENABLED": 1,
                "PLND_TYPE": 1,  # enable companion backend:
                "RC7_OPTION": 39,  # set up a channel switch to enable precision loiter:
            })
            self.set_analog_rangefinder_parameters()
            self.reboot_sitl()

            self.progress("Waiting for location")
            self.change_mode('LOITER')
            self.wait_ready_to_arm()

            # we should be doing precision loiter at this point
            start = self.assert_receive_message('LOCAL_POSITION_NED')

            self.takeoff(20, mode='ALT_HOLD')

            # move away a little
            self.set_rc(2, 1550)
            self.wait_distance(5, accuracy=1)
            self.set_rc(2, 1500)
            self.change_mode('LOITER')

            # turn precision loiter on:
            self.context_collect('STATUSTEXT')
            self.set_rc(7, 2000)

            # try to drag aircraft to a position 5 metres north-east-east:
            self.precision_loiter_to_pos(start.x + 5, start.y + 10, start.z + 10)
            self.wait_statustext("PrecLand: Target Found", check_context=True, timeout=10)
            self.wait_statustext("PrecLand: Init Complete", check_context=True, timeout=10)
            # .... then northwest
            self.precision_loiter_to_pos(start.x + 5, start.y - 10, start.z + 10)

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        self.progress("All done")

        if ex is not None:
            raise ex

    def loiter_requires_position(self):
        # ensure we can't switch to LOITER without position
        self.progress("Ensure we can't enter LOITER without position")
        self.context_push()
        self.set_parameters({
            "GPS_TYPE": 2,
            "SIM_GPS_DISABLE": 1,
        })
        # if there is no GPS at all then we must direct EK3 to not use
        # it at all.  Otherwise it will never initialise, as it wants
        # to calculate the lag and size its delay buffers accordingly.
        self.set_parameters({
            "EK3_SRC1_POSXY": 0,
            "EK3_SRC1_VELZ": 0,
            "EK3_SRC1_VELXY": 0,
        })
        self.reboot_sitl()
        self.delay_sim_time(30)  # wait for accels/gyros to settle

        # check for expected EKF flags
        ahrs_ekf_type = self.get_parameter("AHRS_EKF_TYPE")
        expected_ekf_flags = (mavutil.mavlink.ESTIMATOR_ATTITUDE |
                              mavutil.mavlink.ESTIMATOR_VELOCITY_VERT |
                              mavutil.mavlink.ESTIMATOR_POS_VERT_ABS |
                              mavutil.mavlink.ESTIMATOR_CONST_POS_MODE)
        if ahrs_ekf_type == 2:
            expected_ekf_flags = expected_ekf_flags | mavutil.mavlink.ESTIMATOR_PRED_POS_HORIZ_REL
        self.wait_ekf_flags(expected_ekf_flags, 0, timeout=120)

        # arm in Stabilize and attempt to switch to Loiter
        self.change_mode('STABILIZE')
        self.arm_vehicle()
        self.context_collect('STATUSTEXT')
        self.run_cmd_do_set_mode(
            "LOITER",
            want_result=mavutil.mavlink.MAV_RESULT_FAILED)
        self.wait_statustext("requires position", check_context=True)
        self.disarm_vehicle()
        self.context_pop()
        self.reboot_sitl()

    def ArmFeatures(self):
        '''Arm features'''
        self.loiter_requires_position()

        super(AutoTestCopter, self).ArmFeatures()

    def ParameterChecks(self):
        '''Test Arming Parameter Checks'''
        self.test_parameter_checks_poscontrol("PSC")

    def PosHoldTakeOff(self):
        """ensure vehicle stays put until it is ready to fly"""
        self.context_push()

        ex = None
        try:
            self.set_parameter("PILOT_TKOFF_ALT", 700)
            self.change_mode('POSHOLD')
            self.set_rc(3, 1000)
            self.wait_ready_to_arm()
            self.arm_vehicle()
            self.delay_sim_time(2)
            # check we are still on the ground...
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            if abs(m.relative_alt) > 100:
                raise NotAchievedException("Took off prematurely")

            self.progress("Pushing throttle up")
            self.set_rc(3, 1710)
            self.delay_sim_time(0.5)
            self.progress("Bringing back to hover throttle")
            self.set_rc(3, 1500)

            # make sure we haven't already reached alt:
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            max_initial_alt = 2000
            if abs(m.relative_alt) > max_initial_alt:
                raise NotAchievedException("Took off too fast (%f > %f" %
                                           (abs(m.relative_alt), max_initial_alt))

            self.progress("Monitoring takeoff-to-alt")
            self.wait_altitude(6.9, 8, relative=True)

            self.progress("Making sure we stop at our takeoff altitude")
            tstart = self.get_sim_time()
            while self.get_sim_time() - tstart < 5:
                m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
                delta = abs(7000 - m.relative_alt)
                self.progress("alt=%f delta=%f" % (m.relative_alt/1000,
                                                   delta/1000))
                if delta > 1000:
                    raise NotAchievedException("Failed to maintain takeoff alt")
            self.progress("takeoff OK")
        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.land_and_disarm()
        self.set_rc(8, 1000)

        self.context_pop()

        if ex is not None:
            raise ex

    def initial_mode(self):
        return "STABILIZE"

    def initial_mode_switch_mode(self):
        return "STABILIZE"

    def default_mode(self):
        return "STABILIZE"

    def rc_defaults(self):
        ret = super(AutoTestCopter, self).rc_defaults()
        ret[3] = 1000
        ret[5] = 1800 # mode switch
        return ret

    def MANUAL_CONTROL(self):
        '''test MANUAL_CONTROL mavlink message'''
        self.set_parameter("SYSID_MYGCS", self.mav.source_system)

        self.change_mode('STABILIZE')
        self.takeoff(10)

        tstart = self.get_sim_time_cached()
        want_pitch_degrees = -12
        while True:
            if self.get_sim_time_cached() - tstart > 10:
                raise AutoTestTimeoutException("Did not reach pitch")
            self.progress("Sending pitch-forward")
            self.mav.mav.manual_control_send(
                1, # target system
                500, # x (pitch)
                32767, # y (roll)
                32767, # z (thrust)
                32767, # r (yaw)
                0) # button mask
            m = self.mav.recv_match(type='ATTITUDE', blocking=True, timeout=1)
            print("m=%s" % str(m))
            if m is None:
                continue
            p = math.degrees(m.pitch)
            self.progress("pitch=%f want<=%f" % (p, want_pitch_degrees))
            if p <= want_pitch_degrees:
                break
        self.mav.mav.manual_control_send(
            1, # target system
            32767, # x (pitch)
            32767, # y (roll)
            32767, # z (thrust)
            32767, # r (yaw)
            0) # button mask
        self.do_RTL()

    def check_avoidance_corners(self):
        self.takeoff(10, mode="LOITER")
        self.set_rc(2, 1400)
        west_loc = mavutil.location(-35.363007,
                                    149.164911,
                                    0,
                                    0)
        self.wait_location(west_loc, accuracy=6)
        north_loc = mavutil.location(-35.362908,
                                     149.165051,
                                     0,
                                     0)
        self.reach_heading_manual(0)
        self.wait_location(north_loc, accuracy=6, timeout=200)
        self.reach_heading_manual(90)
        east_loc = mavutil.location(-35.363013,
                                    149.165194,
                                    0,
                                    0)
        self.wait_location(east_loc, accuracy=6)
        self.reach_heading_manual(225)
        self.wait_location(west_loc, accuracy=6, timeout=200)
        self.set_rc(2, 1500)
        self.do_RTL()

    def OBSTACLE_DISTANCE_3D_test_angle(self, angle):
        now = self.get_sim_time_cached()

        distance = 15
        right = distance * math.sin(math.radians(angle))
        front = distance * math.cos(math.radians(angle))
        down = 0

        expected_distance_cm = distance * 100
        # expected orientation
        expected_orientation = int((angle+22.5)/45) % 8
        self.progress("Angle %f expected orient %u" %
                      (angle, expected_orientation))

        tstart = self.get_sim_time()
        last_send = 0
        m = None
        while True:
            now = self.get_sim_time_cached()
            if now - tstart > 100:
                raise NotAchievedException("Did not get correct angle back (last-message=%s)" % str(m))

            if now - last_send > 0.1:
                self.progress("ang=%f sending front=%f right=%f" %
                              (angle, front, right))
                self.mav.mav.obstacle_distance_3d_send(
                    int(now*1000),  # time_boot_ms
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER,
                    mavutil.mavlink.MAV_FRAME_BODY_FRD,
                    65535,
                    front,  # x (m)
                    right,  # y (m)
                    down,  # z (m)
                    0,  # min_distance (m)
                    20  # max_distance (m)
                )
                last_send = now
            m = self.mav.recv_match(type="DISTANCE_SENSOR",
                                    blocking=True,
                                    timeout=1)
            if m is None:
                continue
            # self.progress("Got (%s)" % str(m))
            if m.orientation != expected_orientation:
                # self.progress("Wrong orientation (want=%u got=%u)" %
                # (expected_orientation, m.orientation))
                continue
            if abs(m.current_distance - expected_distance_cm) > 1:
                # self.progress("Wrong distance (want=%f got=%f)" %
                # (expected_distance_cm, m.current_distance))
                continue
            self.progress("distance-at-angle good")
            break

    def OBSTACLE_DISTANCE_3D(self):
        '''Check round-trip behaviour of distance sensors'''
        self.context_push()
        self.set_parameters({
            "SERIAL5_PROTOCOL": 1,
            "PRX1_TYPE": 2,
            "SIM_SPEEDUP": 8,  # much GCS interaction
        })
        self.reboot_sitl()
        # need yaw estimate to stabilise:
        self.wait_ekf_happy(require_absolute=True)

        for angle in range(0, 360):
            self.OBSTACLE_DISTANCE_3D_test_angle(angle)

        self.context_pop()
        self.reboot_sitl()

    def fly_proximity_avoidance_test_corners(self):
        self.start_subtest("Corners")
        self.context_push()
        ex = None
        try:
            self.load_fence("copter-avoidance-fence.txt")
            self.set_parameters({
                "FENCE_ENABLE": 1,
                "PRX1_TYPE": 10,
                "PRX_LOG_RAW": 1,
                "RC10_OPTION": 40, # proximity-enable
            })
            self.reboot_sitl()
            self.progress("Enabling proximity")
            self.set_rc(10, 2000)
            self.check_avoidance_corners()

            self.assert_current_onboard_log_contains_message("PRX")
            self.assert_current_onboard_log_contains_message("PRXR")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.clear_fence()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def ProximitySensors(self):
        '''ensure proximity sensors return appropriate data'''

        self.set_parameters({
            "SERIAL5_PROTOCOL": 11,
            "OA_DB_OUTPUT": 3,
            "OA_TYPE": 2,
        })
        sensors = [  # tuples of name, prx_type
            ('sf45b', 8, {
                mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 285,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1131,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1283,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 625,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 968,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 760,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 762,
            }),
            ('rplidara2', 5, {
                mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 277,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 256,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 1130,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 1288,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 626,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 970,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 762,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 790,
            }),
            ('terarangertower', 3, {
                mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 282,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 450,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 450,
            }),
        ]

        # the following is a "magic" location SITL understands which
        # has some posts near it:
        home_string = "%s,%s,%s,%s" % (51.8752066, 14.6487840, 54.15, 0)
        for (name, prx_type, expected_distances) in sensors:
            self.start_subtest("Testing %s" % name)
            self.set_parameter("PRX1_TYPE", prx_type)
            self.customise_SITL_commandline([
                "--uartF=sim:%s:" % name,
                "--home", home_string,
            ])
            self.wait_ready_to_arm()
            expected_distances_copy = copy.copy(expected_distances)
            tstart = self.get_sim_time()
            failed = False
            wants = []
            gots = []
            while True:
                if self.get_sim_time_cached() - tstart > 30:
                    raise AutoTestTimeoutException("Failed to get distances")
                if len(expected_distances_copy.keys()) == 0:
                    break
                m = self.assert_receive_message("DISTANCE_SENSOR")
                if m.orientation not in expected_distances_copy:
                    continue
                got = m.current_distance
                want = expected_distances_copy[m.orientation]
                wants.append(want)
                gots.append(got)
                if abs(want - got) > 5:
                    failed = True
                del expected_distances_copy[m.orientation]
            if failed:
                raise NotAchievedException(
                    "Distance too great (%s) (want=%s != got=%s)" %
                    (name, wants, gots))

    def fly_proximity_avoidance_test_alt_no_avoid(self):
        self.start_subtest("Alt-no-avoid")
        self.context_push()
        ex = None
        try:
            self.set_parameters({
                "PRX1_TYPE": 2,
                "AVOID_ALT_MIN": 10,
            })
            self.set_analog_rangefinder_parameters()
            self.reboot_sitl()
            tstart = self.get_sim_time()
            self.change_mode('LOITER')
            self.wait_ekf_happy()
            while True:
                if self.armed():
                    break
                if self.get_sim_time_cached() - tstart > 60:
                    raise AutoTestTimeoutException("Did not arm")
                self.mav.mav.distance_sensor_send(
                    0, # time_boot_ms
                    10, # min_distance cm
                    500, # max_distance cm
                    400, # current_distance cm
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    26, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
                    255  # covariance
                )
                self.send_cmd(mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
                              1,  # ARM
                              0,
                              0,
                              0,
                              0,
                              0,
                              0)
            self.takeoff(15, mode='LOITER')
            self.progress("Poking vehicle; should avoid")

            def shove(a, b):
                self.mav.mav.distance_sensor_send(
                    0,  # time_boot_ms
                    10, # min_distance cm
                    500, # max_distance cm
                    20, # current_distance cm
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
                    255  # covariance
                )
            self.wait_speed_vector_bf(
                Vector3(-0.4, 0.0, 0.0),
                timeout=10,
                called_function=shove,
            )

            self.change_alt(5)

            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time_cached() - tstart > 10:
                    break
                vel = self.get_body_frame_velocity()
                if vel.length() > 0.3:
                    raise NotAchievedException("Moved too much (%s)" %
                                               (str(vel),))
                shove(None, None)

        except Exception as e:
            self.progress("Caught exception: %s" %
                          self.get_exception_stacktrace(e))
            ex = e
        self.context_pop()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def AC_Avoidance_Proximity(self):
        '''Test proximity avoidance slide behaviour'''
        self.fly_proximity_avoidance_test_alt_no_avoid()
        self.fly_proximity_avoidance_test_corners()

    def AC_Avoidance_Fence(self):
        '''Test fence avoidance slide behaviour'''
        self.context_push()
        ex = None
        try:
            self.load_fence("copter-avoidance-fence.txt")
            self.set_parameter("FENCE_ENABLE", 1)
            self.check_avoidance_corners()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.clear_fence()
        self.disarm_vehicle(force=True)
        if ex is not None:
            raise ex

    def global_position_int_for_location(self, loc, time_boot, heading=0):
        return self.mav.mav.global_position_int_encode(
            int(time_boot * 1000), # time_boot_ms
            int(loc.lat * 1e7),
            int(loc.lng * 1e7),
            int(loc.alt * 1000), # alt in mm
            20, # relative alt - urp.
            vx=0,
            vy=0,
            vz=0,
            hdg=heading
        )

    def ModeFollow(self):
        '''Fly follow mode'''
        foll_ofs_x = 30 # metres
        self.set_parameters({
            "FOLL_ENABLE": 1,
            "FOLL_SYSID": self.mav.source_system,
            "FOLL_OFS_X": -foll_ofs_x,
            "FOLL_OFS_TYPE": 1, # relative to other vehicle heading
        })
        self.takeoff(10, mode="LOITER")
        self.set_parameter("SIM_SPEEDUP", 1)
        self.change_mode("FOLLOW")
        new_loc = self.mav.location()
        new_loc_offset_n = 20
        new_loc_offset_e = 30
        self.location_offset_ne(new_loc, new_loc_offset_n, new_loc_offset_e)
        self.progress("new_loc: %s" % str(new_loc))
        heading = 0
        if self.mavproxy is not None:
            self.mavproxy.send("map icon %f %f greenplane %f\n" %
                               (new_loc.lat, new_loc.lng, heading))

        expected_loc = copy.copy(new_loc)
        self.location_offset_ne(expected_loc, -foll_ofs_x, 0)
        if self.mavproxy is not None:
            self.mavproxy.send("map icon %f %f hoop\n" %
                               (expected_loc.lat, expected_loc.lng))
        self.progress("expected_loc: %s" % str(expected_loc))

        last_sent = 0
        tstart = self.get_sim_time()
        while True:
            now = self.get_sim_time_cached()
            if now - tstart > 60:
                raise NotAchievedException("Did not FOLLOW")
            if now - last_sent > 0.5:
                gpi = self.global_position_int_for_location(new_loc,
                                                            now,
                                                            heading=heading)
                gpi.pack(self.mav.mav)
                self.mav.mav.send(gpi)
            self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
            pos = self.mav.location()
            delta = self.get_distance(expected_loc, pos)
            max_delta = 3
            self.progress("position delta=%f (want <%f)" % (delta, max_delta))
            if delta < max_delta:
                break
        self.do_RTL()

    def get_global_position_int(self, timeout=30):
        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > timeout:
                raise NotAchievedException("Did not get good global_position_int")
            m = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
            self.progress("GPI: %s" % str(m))
            if m is None:
                continue
            if m.lat != 0 or m.lon != 0:
                return m

    def BeaconPosition(self):
        '''Fly Beacon Position'''
        self.reboot_sitl()

        self.wait_ready_to_arm(require_absolute=True)

        old_pos = self.get_global_position_int()
        print("old_pos=%s" % str(old_pos))

        self.context_push()
        ex = None
        try:
            self.set_parameters({
                "BCN_TYPE": 10,
                "BCN_LATITUDE": SITL_START_LOCATION.lat,
                "BCN_LONGITUDE": SITL_START_LOCATION.lng,
                "BCN_ALT": SITL_START_LOCATION.alt,
                "BCN_ORIENT_YAW": 0,
                "AVOID_ENABLE": 4,
                "GPS_TYPE": 0,
                "EK3_ENABLE": 1,
                "EK3_SRC1_POSXY": 4, # Beacon
                "EK3_SRC1_POSZ": 1,  # Baro
                "EK3_SRC1_VELXY": 0, # None
                "EK3_SRC1_VELZ": 0,  # None
                "EK2_ENABLE": 0,
                "AHRS_EKF_TYPE": 3,
            })
            self.reboot_sitl()

            # turn off GPS arming checks.  This may be considered a
            # bug that we need to do this.
            old_arming_check = int(self.get_parameter("ARMING_CHECK"))
            if old_arming_check == 1:
                old_arming_check = 1 ^ 25 - 1
            new_arming_check = int(old_arming_check) & ~(1 << 3)
            self.set_parameter("ARMING_CHECK", new_arming_check)

            self.reboot_sitl()

            # require_absolute=True infers a GPS is present
            self.wait_ready_to_arm(require_absolute=False)

            tstart = self.get_sim_time()
            timeout = 20
            while True:
                if self.get_sim_time_cached() - tstart > timeout:
                    raise NotAchievedException("Did not get new position like old position")
                self.progress("Fetching location")
                new_pos = self.get_global_position_int()
                pos_delta = self.get_distance_int(old_pos, new_pos)
                max_delta = 1
                self.progress("delta=%u want <= %u" % (pos_delta, max_delta))
                if pos_delta <= max_delta:
                    break

            self.progress("Moving to ensure location is tracked")
            self.takeoff(10, mode="STABILIZE")
            self.change_mode("CIRCLE")

            tstart = self.get_sim_time()
            max_delta = 0
            max_allowed_delta = 10
            while True:
                if self.get_sim_time_cached() - tstart > timeout:
                    break

                pos_delta = self.get_distance_int(self.sim_location_int(), self.get_global_position_int())
                self.progress("pos_delta=%f max_delta=%f max_allowed_delta=%f" % (pos_delta, max_delta, max_allowed_delta))
                if pos_delta > max_delta:
                    max_delta = pos_delta
                if pos_delta > max_allowed_delta:
                    raise NotAchievedException("Vehicle location not tracking simulated location (%f > %f)" %
                                               (pos_delta, max_allowed_delta))
            self.progress("Tracked location just fine (max_delta=%f)" % max_delta)
            self.change_mode("LOITER")
            self.wait_groundspeed(0, 0.3, timeout=120)
            self.land_and_disarm()

            self.assert_current_onboard_log_contains_message("BCN")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def AC_Avoidance_Beacon(self):
        '''Test beacon avoidance slide behaviour'''
        self.context_push()
        ex = None
        try:
            self.set_parameters({
                "BCN_TYPE": 10,
                "BCN_LATITUDE": int(SITL_START_LOCATION.lat),
                "BCN_LONGITUDE": int(SITL_START_LOCATION.lng),
                "BCN_ORIENT_YAW": 45,
                "AVOID_ENABLE": 4,
            })
            self.reboot_sitl()

            self.takeoff(10, mode="LOITER")
            self.set_rc(2, 1400)
            west_loc = mavutil.location(-35.362919, 149.165055, 0, 0)
            self.wait_location(west_loc, accuracy=1)
            self.reach_heading_manual(0)
            north_loc = mavutil.location(-35.362881, 149.165103, 0, 0)
            self.wait_location(north_loc, accuracy=1)
            self.set_rc(2, 1500)
            self.set_rc(1, 1600)
            east_loc = mavutil.location(-35.362986, 149.165227, 0, 0)
            self.wait_location(east_loc, accuracy=1)
            self.set_rc(1, 1500)
            self.set_rc(2, 1600)
            south_loc = mavutil.location(-35.363025, 149.165182, 0, 0)
            self.wait_location(south_loc, accuracy=1)
            self.set_rc(2, 1500)
            self.do_RTL()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.clear_fence()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def BaroWindCorrection(self):
        '''Test wind estimation and baro position error compensation'''
        self.context_push()
        ex = None
        try:
            self.customise_SITL_commandline(
                ["--defaults", ','.join(self.model_defaults_filepath('Callisto'))],
                model="octa-quad:@ROMFS/models/Callisto.json",
                wipe=True,
            )
            wind_spd_truth = 8.0
            wind_dir_truth = 90.0
            self.set_parameters({
                "EK3_ENABLE": 1,
                "EK2_ENABLE": 0,
                "AHRS_EKF_TYPE": 3,
                "BARO1_WCF_ENABLE": 1.000000,
            })
            self.reboot_sitl()
            self.set_parameters({
                "BARO1_WCF_FWD": -0.300000,
                "BARO1_WCF_BCK": -0.300000,
                "BARO1_WCF_RGT": 0.300000,
                "BARO1_WCF_LFT": 0.300000,
                "BARO1_WCF_UP": 0.300000,
                "BARO1_WCF_DN": 0.300000,
                "SIM_BARO_WCF_FWD": -0.300000,
                "SIM_BARO_WCF_BAK": -0.300000,
                "SIM_BARO_WCF_RGT": 0.300000,
                "SIM_BARO_WCF_LFT": 0.300000,
                "SIM_BARO_WCF_UP": 0.300000,
                "SIM_BARO_WCF_DN": 0.300000,
                "SIM_WIND_DIR": wind_dir_truth,
                "SIM_WIND_SPD": wind_spd_truth,
                "SIM_WIND_T": 1.000000,
            })
            self.reboot_sitl()

            # require_absolute=True infers a GPS is present
            self.wait_ready_to_arm(require_absolute=False)

            self.progress("Climb to 20m in LOITER and yaw spin for 30 seconds")
            self.takeoff(10, mode="LOITER")
            self.set_rc(4, 1400)
            self.delay_sim_time(30)

            # check wind esitmates
            m = self.mav.recv_match(type='WIND', blocking=True)
            speed_error = abs(m.speed - wind_spd_truth)
            angle_error = abs(m.direction - wind_dir_truth)
            if (speed_error > 1.0):
                raise NotAchievedException("Wind speed incorrect - want %f +-1 got %f m/s" % (wind_spd_truth, m.speed))
            if (angle_error > 15.0):
                raise NotAchievedException(
                    "Wind direction incorrect - want %f +-15 got %f deg" %
                    (wind_dir_truth, m.direction))
            self.progress("Wind estimate is good, now check height variation for 30 seconds")

            # check height stability over another 30 seconds
            z_min = 1E6
            z_max = -1E6
            tstart = self.get_sim_time()
            while (self.get_sim_time() < tstart + 30):
                m = self.mav.recv_match(type='LOCAL_POSITION_NED', blocking=True)
                if (m.z > z_max):
                    z_max = m.z
                if (m.z < z_min):
                    z_min = m.z
            if (z_max-z_min > 0.5):
                raise NotAchievedException("Height variation is excessive")
            self.progress("Height variation is good")

            self.set_rc(4, 1500)
            self.land_and_disarm()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def wait_generator_speed_and_state(self, rpm_min, rpm_max, want_state, timeout=240):
        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > timeout:
                raise NotAchievedException("Did not move to state/speed")

            m = self.assert_receive_message("GENERATOR_STATUS", timeout=10)

            if m.generator_speed < rpm_min:
                self.progress("Too slow (%u<%u)" % (m.generator_speed, rpm_min))
                continue
            if m.generator_speed > rpm_max:
                self.progress("Too fast (%u>%u)" % (m.generator_speed, rpm_max))
                continue
            if m.status != want_state:
                self.progress("Wrong state (got=%u want=%u)" % (m.status, want_state))
            break
        self.progress("Got generator speed and state")

    def RichenPower(self):
        '''Test RichenPower generator'''
        self.set_parameters({
            "SERIAL5_PROTOCOL": 30,
            "SIM_RICH_ENABLE": 1,
            "SERVO8_FUNCTION": 42,
            "SIM_RICH_CTRL": 8,
            "RC9_OPTION": 85,
            "LOG_DISARMED": 1,
            "BATT2_MONITOR": 17,
            "GEN_TYPE": 3,
        })
        self.reboot_sitl()
        self.set_rc(9, 1000) # remember this is a switch position - stop
        self.customise_SITL_commandline(["--uartF=sim:richenpower"])
        self.wait_statustext("requested state is not RUN", timeout=60)

        self.set_message_rate_hz("GENERATOR_STATUS", 10)

        self.wait_generator_speed_and_state(0, 0, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_OFF)

        self.context_collect('STATUSTEXT')
        self.set_rc(9, 2000) # remember this is a switch position - run
        self.wait_statustext("Generator HIGH", check_context=True)
        self.set_rc(9, 1000) # remember this is a switch position - stop
        self.wait_statustext("requested state is not RUN", timeout=200)

        self.set_rc(9, 1500) # remember this is a switch position - idle
        self.wait_generator_speed_and_state(3000, 8000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE)

        self.set_rc(9, 2000) # remember this is a switch position - run
#        self.wait_generator_speed_and_state(3000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_WARMING_UP)

        self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING)

        bs = self.mav.recv_match(
            type="BATTERY_STATUS",
            condition="BATTERY_STATUS.id==1",  # id is zero-indexed
            timeout=1,
            blocking=True
        )
        if bs is None:
            raise NotAchievedException("Did not receive BATTERY_STATUS")
        self.progress("Received battery status: %s" % str(bs))
        want_bs_volt = 50000
        if bs.voltages[0] != want_bs_volt:
            raise NotAchievedException("Battery voltage not as expected (want=%f) got=(%f)" % (want_bs_volt, bs.voltages[0],))

        self.progress("Moving *back* to idle")
        self.set_rc(9, 1500) # remember this is a switch position - idle
        self.wait_generator_speed_and_state(3000, 10000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_IDLE)

        self.progress("Moving *back* to run")
        self.set_rc(9, 2000) # remember this is a switch position - run
        self.wait_generator_speed_and_state(8000, 30000, mavutil.mavlink.MAV_GENERATOR_STATUS_FLAG_GENERATING)

        self.set_message_rate_hz("GENERATOR_STATUS", -1)
        self.set_parameter("LOG_DISARMED", 0)
        if not self.current_onboard_log_contains_message("GEN"):
            raise NotAchievedException("Did not find expected GEN message")

    def IE24(self):
        '''Test IntelligentEnergy 2.4kWh generator'''
        elec_battery_instance = 2
        fuel_battery_instance = 1
        self.set_parameters({
            "SERIAL5_PROTOCOL": 30,
            "SERIAL5_BAUD": 115200,
            "GEN_TYPE": 2,
            "BATT%u_MONITOR" % (fuel_battery_instance + 1): 18,  # fuel-based generator
            "BATT%u_MONITOR" % (elec_battery_instance + 1): 17,
            "SIM_IE24_ENABLE": 1,
            "LOG_DISARMED": 1,
        })

        self.customise_SITL_commandline(["--uartF=sim:ie24"])

        self.start_subtest("ensure that BATTERY_STATUS for electrical generator message looks right")
        self.start_subsubtest("Checking original voltage (electrical)")
        # ArduPilot spits out essentially uninitialised battery
        # messages until we read things fromthe battery:
        self.delay_sim_time(30)
        original_elec_m = self.wait_message_field_values('BATTERY_STATUS', {
            "charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK
        }, instance=elec_battery_instance)
        original_fuel_m = self.wait_message_field_values('BATTERY_STATUS', {
            "charge_state": mavutil.mavlink.MAV_BATTERY_CHARGE_STATE_OK
        }, instance=fuel_battery_instance)

        if original_elec_m.battery_remaining < 90:
            raise NotAchievedException("Bad original percentage")
        self.start_subsubtest("Ensure percentage is counting down")
        self.wait_message_field_values('BATTERY_STATUS', {
            "battery_remaining": original_elec_m.battery_remaining - 1,
        }, instance=elec_battery_instance)

        self.start_subtest("ensure that BATTERY_STATUS for fuel generator message looks right")
        self.start_subsubtest("Checking original voltage (fuel)")
        # ArduPilot spits out essentially uninitialised battery
        # messages until we read things fromthe battery:
        if original_fuel_m.battery_remaining <= 90:
            raise NotAchievedException("Bad original percentage (want=>%f got %f" % (90, original_fuel_m.battery_remaining))
        self.start_subsubtest("Ensure percentage is counting down")
        self.wait_message_field_values('BATTERY_STATUS', {
            "battery_remaining": original_fuel_m.battery_remaining - 1,
        }, instance=fuel_battery_instance)

        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.disarm_vehicle()

        # Test for pre-arm check fail when state is not running
        self.start_subtest("If you haven't taken off generator error should cause instant failsafe and disarm")
        self.set_parameter("SIM_IE24_STATE", 8)
        self.wait_statustext("Status not running", timeout=40)
        self.try_arm(result=False,
                     expect_msg="Status not running")
        self.set_parameter("SIM_IE24_STATE", 2) # Explicitly set state to running

        # Test that error code does result in failsafe
        self.start_subtest("If you haven't taken off generator error should cause instant failsafe and disarm")
        self.change_mode("STABILIZE")
        self.set_parameter("DISARM_DELAY", 0)
        self.arm_vehicle()
        self.set_parameter("SIM_IE24_ERROR", 30)
        self.disarm_wait(timeout=1)
        self.set_parameter("SIM_IE24_ERROR", 0)
        self.set_parameter("DISARM_DELAY", 10)

    def AuxSwitchOptions(self):
        '''Test random aux mode options'''
        self.set_parameter("RC7_OPTION", 58) # clear waypoints
        self.load_mission("copter_loiter_to_alt.txt")
        self.set_rc(7, 1000)
        self.assert_mission_count(5)
        self.progress("Clear mission")
        self.set_rc(7, 2000)
        self.delay_sim_time(1) # allow switch to debounce
        self.assert_mission_count(0)
        self.set_rc(7, 1000)
        self.set_parameter("RC7_OPTION", 24) # reset mission
        self.delay_sim_time(2)
        self.load_mission("copter_loiter_to_alt.txt")
        set_wp = 4
        self.set_current_waypoint(set_wp)
        self.wait_current_waypoint(set_wp, timeout=10)
        self.progress("Reset mission")
        self.set_rc(7, 2000)
        self.delay_sim_time(1)
        self.wait_current_waypoint(0, timeout=10)
        self.set_rc(7, 1000)

    def AuxFunctionsInMission(self):
        '''Test use of auxilliary functions in missions'''
        self.load_mission("aux_functions.txt")
        self.change_mode('LOITER')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.change_mode('AUTO')
        self.set_rc(3, 1500)
        self.wait_mode('ALT_HOLD')
        self.change_mode('AUTO')
        self.wait_rtl_complete()

    def WatchAlts(self):
        '''Ensure we can monitor different altitudes'''
        self.takeoff(30, mode='GUIDED')
        self.delay_sim_time(5, reason='let altitude settle')

        self.progress("Testing absolute altitudes")
        absolute_alt = self.get_altitude(altitude_source='SIM_STATE.alt')
        self.progress("absolute_alt=%f" % absolute_alt)
        epsilon = 4  # SIM_STATE and vehicle state can be off by a bit...
        for source in ['GLOBAL_POSITION_INT.alt', 'SIM_STATE.alt', 'GPS_RAW_INT.alt']:
            self.watch_altitude_maintained(
                absolute_alt-epsilon,
                absolute_alt+epsilon,
                altitude_source=source
            )

        self.progress("Testing absolute altitudes")
        relative_alt = self.get_altitude(relative=True)
        for source in ['GLOBAL_POSITION_INT.relative_alt']:
            self.watch_altitude_maintained(
                relative_alt-epsilon,
                relative_alt+epsilon,
                altitude_source=source
            )

        self.do_RTL()

    def fly_rangefinder_drivers_fly(self, rangefinders):
        '''ensure rangefinder gives height-above-ground'''
        self.change_mode('GUIDED')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        expected_alt = 5
        self.user_takeoff(alt_min=expected_alt)
        rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True)
        if rf is None:
            raise NotAchievedException("Did not receive rangefinder message")
        gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
        if gpi is None:
            raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message")
        if abs(rf.distance - gpi.relative_alt/1000.0) > 1:
            raise NotAchievedException(
                "rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" %
                (rf.distance, gpi.relative_alt/1000.0)
            )

        for i in range(0, len(rangefinders)):
            name = rangefinders[i]
            self.progress("i=%u (%s)" % (i, name))
            ds = self.mav.recv_match(
                type="DISTANCE_SENSOR",
                timeout=2,
                blocking=True,
                condition="DISTANCE_SENSOR.id==%u" % i
            )
            if ds is None:
                raise NotAchievedException("Did not receive DISTANCE_SENSOR message for id==%u (%s)" % (i, name))
            self.progress("Got: %s" % str(ds))
            if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1:
                raise NotAchievedException(
                    "distance sensor.current_distance (%f) (%s) disagrees with global-position-int.relative_alt (%s)" %
                    (ds.current_distance/100.0, name, gpi.relative_alt/1000.0))

        self.land_and_disarm()

        self.progress("Ensure RFND messages in log")
        if not self.current_onboard_log_contains_message("RFND"):
            raise NotAchievedException("No RFND messages in log")

    def MAVProximity(self):
        '''Test MAVLink proximity driver'''
        self.start_subtest("Test mavlink proximity sensor using DISTANCE_SENSOR messages")  # noqa
        self.context_push()
        ex = None
        try:
            self.set_parameter("SERIAL5_PROTOCOL", 1)
            self.set_parameter("PRX1_TYPE", 2)  # mavlink
            self.reboot_sitl()

            self.progress("Should be unhealthy while we don't send messages")
            self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False)

            self.progress("Should be healthy while we're sending good messages")
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time() - tstart > 5:
                    raise NotAchievedException("Sensor did not come good")
                self.mav.mav.distance_sensor_send(
                    0,  # time_boot_ms
                    10, # min_distance cm
                    50, # max_distance cm
                    20, # current_distance cm
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_NONE, # orientation
                    255  # covariance
                )
                if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, True):
                    self.progress("Sensor has good state")
                    break
                self.delay_sim_time(0.1)

            self.progress("Should be unhealthy again if we stop sending messages")
            self.delay_sim_time(1)
            self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_PROXIMITY, True, True, False)

            # now make sure we get echoed back the same sorts of things we send:
            # distances are in cm
            distance_map = {
                mavutil.mavlink.MAV_SENSOR_ROTATION_NONE: 30,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_45: 35,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_90: 20,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_135: 15,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_180: 70,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_225: 80,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_270: 10,
                mavutil.mavlink.MAV_SENSOR_ROTATION_YAW_315: 90,
            }

            wanted_distances = copy.copy(distance_map)
            sensor_enum = mavutil.mavlink.enums["MAV_SENSOR_ORIENTATION"]

            def my_message_hook(mav, m):
                if m.get_type() != 'DISTANCE_SENSOR':
                    return
                self.progress("Got (%s)" % str(m))
                want = distance_map[m.orientation]
                got = m.current_distance
                # ArduPilot's floating point conversions make it imprecise:
                delta = abs(want-got)
                if delta > 1:
                    self.progress(
                        "Wrong distance (%s): want=%f got=%f" %
                        (sensor_enum[m.orientation].name, want, got))
                    return
                if m.orientation not in wanted_distances:
                    return
                self.progress(
                    "Correct distance (%s): want=%f got=%f" %
                    (sensor_enum[m.orientation].name, want, got))
                del wanted_distances[m.orientation]

            self.install_message_hook_context(my_message_hook)
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time() - tstart > 5:
                    raise NotAchievedException("Sensor did not give right distances")  # noqa
                for (orient, dist) in distance_map.items():
                    self.mav.mav.distance_sensor_send(
                        0,  # time_boot_ms
                        10, # min_distance cm
                        90, # max_distance cm
                        dist, # current_distance cm
                        mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                        21, # id
                        orient, # orientation
                        255  # covariance
                    )
                self.wait_heartbeat()
                if len(wanted_distances.keys()) == 0:
                    break
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def fly_rangefinder_mavlink_distance_sensor(self):
        self.start_subtest("Test mavlink rangefinder using DISTANCE_SENSOR messages")
        self.context_push()
        self.set_parameters({
            "RTL_ALT_TYPE": 0,
            "LGR_ENABLE": 1,
            "LGR_DEPLOY_ALT": 1,
            "LGR_RETRACT_ALT": 10, # metres
            "SERVO10_FUNCTION": 29
        })
        ex = None
        try:
            self.set_parameter("SERIAL5_PROTOCOL", 1)
            self.set_parameter("RNGFND1_TYPE", 10)
            self.reboot_sitl()
            self.set_parameter("RNGFND1_MAX_CM", 32767)

            self.progress("Should be unhealthy while we don't send messages")
            self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False)

            self.progress("Should be healthy while we're sending good messages")
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time() - tstart > 5:
                    raise NotAchievedException("Sensor did not come good")
                self.mav.mav.distance_sensor_send(
                    0,  # time_boot_ms
                    10, # min_distance
                    50, # max_distance
                    20, # current_distance
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
                    255 # covariance
                )
                if self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, True):
                    self.progress("Sensor has good state")
                    break
                self.delay_sim_time(0.1)

            self.progress("Should be unhealthy again if we stop sending messages")
            self.delay_sim_time(1)
            self.assert_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION, True, True, False)

            self.progress("Landing gear should deploy with current_distance below min_distance")
            self.change_mode('STABILIZE')
            timeout = 60
            tstart = self.get_sim_time()
            while not self.sensor_has_state(mavutil.mavlink.MAV_SYS_STATUS_PREARM_CHECK, True, True, True):
                if self.get_sim_time() - tstart > timeout:
                    raise NotAchievedException("Failed to become armable after %f seconds" % timeout)
                self.mav.mav.distance_sensor_send(
                    0,  # time_boot_ms
                    100, # min_distance (cm)
                    2500, # max_distance (cm)
                    200, # current_distance (cm)
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
                    255  # covariance
                )
            self.arm_vehicle()
            self.delay_sim_time(1)  # servo function maps only periodically updated
#            self.send_debug_trap()

            self.run_cmd(
                mavutil.mavlink.MAV_CMD_AIRFRAME_CONFIGURATION,
                0,
                0,  # deploy
                0,
                0,
                0,
                0,
                0
            )

            self.context_collect("STATUSTEXT")
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time_cached() - tstart > 5:
                    raise NotAchievedException("Retraction did not happen")
                self.mav.mav.distance_sensor_send(
                    0,  # time_boot_ms
                    100, # min_distance (cm)
                    6000, # max_distance (cm)
                    1500, # current_distance (cm)
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
                    255  # covariance
                )
                self.delay_sim_time(0.1)
                try:
                    self.wait_text("LandingGear: RETRACT", check_context=True, timeout=0.1)
                except Exception:
                    continue
                self.progress("Retracted")
                break
#            self.send_debug_trap()
            while True:
                if self.get_sim_time_cached() - tstart > 5:
                    raise NotAchievedException("Deployment did not happen")
                self.progress("Sending distance-sensor message")
                self.mav.mav.distance_sensor_send(
                    0, # time_boot_ms
                    300, # min_distance
                    500, # max_distance
                    250, # current_distance
                    mavutil.mavlink.MAV_DISTANCE_SENSOR_LASER, # type
                    21, # id
                    mavutil.mavlink.MAV_SENSOR_ROTATION_PITCH_270, # orientation
                    255 # covariance
                )
                try:
                    self.wait_text("LandingGear: DEPLOY", check_context=True, timeout=0.1)
                except Exception:
                    continue
                self.progress("Deployed")
                break
            self.disarm_vehicle()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.reboot_sitl()
        if ex is not None:
            raise ex

    def GSF(self):
        '''test the Gaussian Sum filter'''
        ex = None
        self.context_push()
        try:
            self.set_parameter("EK2_ENABLE", 1)
            self.reboot_sitl()
            self.takeoff(20, mode='LOITER')
            self.set_rc(2, 1400)
            self.delay_sim_time(5)
            self.set_rc(2, 1500)
            self.progress("Path: %s" % self.current_onboard_log_filepath())
            dfreader = self.dfreader_for_current_onboard_log()
            self.do_RTL()
        except Exception as e:
            self.progress("Caught exception: %s" %
                          self.get_exception_stacktrace(e))
            ex = e

        self.context_pop()
        self.reboot_sitl()

        if ex is not None:
            raise ex

        # ensure log messages present
        want = set(["XKY0", "XKY1", "NKY0", "NKY1"])
        still_want = want
        while len(still_want):
            m = dfreader.recv_match(type=want)
            if m is None:
                raise NotAchievedException("Did not get %s" % want)
            still_want.remove(m.get_type())

    def fly_rangefinder_mavlink(self):
        self.fly_rangefinder_mavlink_distance_sensor()

        # explicit test for the mavlink driver as it doesn't play so nice:
        self.set_parameters({
            "SERIAL5_PROTOCOL": 1,
            "RNGFND1_TYPE": 10,
        })
        self.customise_SITL_commandline(['--uartF=sim:rf_mavlink'])

        self.change_mode('GUIDED')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        expected_alt = 5
        self.user_takeoff(alt_min=expected_alt)

        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time() - tstart > 5:
                raise NotAchievedException("Mavlink rangefinder not working")
            rf = self.mav.recv_match(type="RANGEFINDER", timeout=1, blocking=True)
            if rf is None:
                raise NotAchievedException("Did not receive rangefinder message")
            gpi = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True, timeout=1)
            if gpi is None:
                raise NotAchievedException("Did not receive GLOBAL_POSITION_INT message")
            if abs(rf.distance - gpi.relative_alt/1000.0) > 1:
                print("rangefinder alt (%s) disagrees with global-position-int.relative_alt (%s)" %
                      (rf.distance, gpi.relative_alt/1000.0))
                continue

            ds = self.mav.recv_match(
                type="DISTANCE_SENSOR",
                timeout=2,
                blocking=True,
            )
            if ds is None:
                raise NotAchievedException("Did not receive DISTANCE_SENSOR message")
            self.progress("Got: %s" % str(ds))
            if abs(ds.current_distance/100.0 - gpi.relative_alt/1000.0) > 1:
                print(
                    "distance sensor.current_distance (%f) disagrees with global-position-int.relative_alt (%s)" %
                    (ds.current_distance/100.0, gpi.relative_alt/1000.0))
                continue
            break
        self.progress("mavlink rangefinder OK")
        self.land_and_disarm()

    def MaxBotixI2CXL(self):
        '''Test maxbotix rangefinder drivers'''
        ex = None
        try:
            self.context_push()

            self.start_subtest("No messages")
            rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
            if rf is not None:
                raise NotAchievedException("Receiving DISTANCE_SENSOR when I shouldn't be")

            self.start_subtest("Default address")
            self.set_parameter("RNGFND1_TYPE", 2)  # maxbotix
            self.reboot_sitl()
            self.do_timesync_roundtrip()
            rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
            self.progress("Got (%s)" % str(rf))
            if rf is None:
                raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")

            self.start_subtest("Explicitly set to default address")
            self.set_parameters({
                "RNGFND1_TYPE": 2,  # maxbotix
                "RNGFND1_ADDR": 0x70,
            })
            self.reboot_sitl()
            self.do_timesync_roundtrip()
            rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
            self.progress("Got (%s)" % str(rf))
            if rf is None:
                raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")

            self.start_subtest("Explicitly set to non-default address")
            self.set_parameter("RNGFND1_ADDR", 0x71)
            self.reboot_sitl()
            self.do_timesync_roundtrip()
            rf = self.mav.recv_match(type="DISTANCE_SENSOR", timeout=5, blocking=True)
            self.progress("Got (%s)" % str(rf))
            if rf is None:
                raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")

            self.start_subtest("Two MaxBotix RangeFinders")
            self.set_parameters({
                "RNGFND1_TYPE": 2,  # maxbotix
                "RNGFND1_ADDR": 0x70,
                "RNGFND1_MIN_CM": 150,
                "RNGFND2_TYPE": 2,  # maxbotix
                "RNGFND2_ADDR": 0x71,
                "RNGFND2_MIN_CM": 250,
            })
            self.reboot_sitl()
            self.do_timesync_roundtrip()
            for i in [0, 1]:
                rf = self.mav.recv_match(
                    type="DISTANCE_SENSOR",
                    timeout=5,
                    blocking=True,
                    condition="DISTANCE_SENSOR.id==%u" % i
                )
                self.progress("Got id==%u (%s)" % (i, str(rf)))
                if rf is None:
                    raise NotAchievedException("Didn't receive DISTANCE_SENSOR when I should've")
                expected_dist = 150
                if i == 1:
                    expected_dist = 250
                if rf.min_distance != expected_dist:
                    raise NotAchievedException("Unexpected min_cm (want=%u got=%u)" %
                                               (expected_dist, rf.min_distance))

            self.context_pop()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.reboot_sitl()
        if ex is not None:
            raise ex

    def RangeFinderDrivers(self):
        '''Test rangefinder drivers'''
        self.set_parameters({
            "RTL_ALT": 500,
            "RTL_ALT_TYPE": 1,
        })
        drivers = [
            ("lightwareserial", 8),  # autodetected between this and -binary
            ("lightwareserial-binary", 8),
            ("USD1_v0", 11),
            ("USD1_v1", 11),
            ("leddarone", 12),
            ("maxsonarseriallv", 13),
            ("nmea", 17, {"baud": 9600}),
            ("wasp", 18),
            ("benewake_tf02", 19),
            ("blping", 23),
            ("benewake_tfmini", 20),
            ("lanbao", 26),
            ("benewake_tf03", 27),
            ("gyus42v2", 31),
            ("teraranger_serial", 35),
        ]
        while len(drivers):
            do_drivers = drivers[0:3]
            drivers = drivers[3:]
            command_line_args = []
            self.context_push()
            for (offs, cmdline_argument, serial_num) in [(0, '--uartE', 4),
                                                         (1, '--uartF', 5),
                                                         (2, '--uartG', 6)]:
                if len(do_drivers) > offs:
                    if len(do_drivers[offs]) > 2:
                        (sim_name, rngfnd_param_value, kwargs) = do_drivers[offs]
                    else:
                        (sim_name, rngfnd_param_value) = do_drivers[offs]
                        kwargs = {}
                    command_line_args.append("%s=sim:%s" %
                                             (cmdline_argument, sim_name))
                    sets = {
                        "SERIAL%u_PROTOCOL" % serial_num: 9, # rangefinder
                        "RNGFND%u_TYPE" % (offs+1): rngfnd_param_value,
                    }
                    if "baud" in kwargs:
                        sets["SERIAL%u_BAUD" % serial_num] = kwargs["baud"]
                    self.set_parameters(sets)
            self.customise_SITL_commandline(command_line_args)
            self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers])
            self.context_pop()

        self.fly_rangefinder_mavlink()

        i2c_drivers = [
            ("maxbotixi2cxl", 2),
        ]
        while len(i2c_drivers):
            do_drivers = i2c_drivers[0:9]
            i2c_drivers = i2c_drivers[9:]
            count = 1
            p = {}
            for d in do_drivers:
                (sim_name, rngfnd_param_value) = d
                p["RNGFND%u_TYPE" % count] = rngfnd_param_value
                count += 1

            self.set_parameters(p)

            self.reboot_sitl()
            self.fly_rangefinder_drivers_fly([x[0] for x in do_drivers])

    def RangeFinderDriversMaxAlt(self):
        '''test max-height behaviour'''
        # lightwareserial goes to 130m when out of range
        self.set_parameters({
            "SERIAL4_PROTOCOL": 9,
            "RNGFND1_TYPE": 8,
            "WPNAV_SPEED_UP": 1000,  # cm/s
        })
        self.customise_SITL_commandline([
            "--uartE=sim:lightwareserial",
        ])
        self.takeoff(95, mode='GUIDED', timeout=240, max_err=0.5)
        self.assert_rangefinder_distance_between(90, 100)

        self.wait_rangefinder_distance(90, 100)

        rf_bit = mavutil.mavlink.MAV_SYS_STATUS_SENSOR_LASER_POSITION

        self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True)
        self.assert_distance_sensor_quality(100)

        self.progress("Moving higher to be out of max rangefinder range")
        self.fly_guided_move_local(0, 0, 150)

        # sensor remains healthy even out-of-range
        self.assert_sensor_state(rf_bit, present=True, enabled=True, healthy=True)

        self.assert_distance_sensor_quality(1)

        self.do_RTL()

    def ShipTakeoff(self):
        '''Fly Simulated Ship Takeoff'''
        # test ship takeoff
        self.wait_groundspeed(0, 2)
        self.set_parameters({
            "SIM_SHIP_ENABLE": 1,
            "SIM_SHIP_SPEED": 10,
            "SIM_SHIP_DSIZE": 2,
        })
        self.wait_ready_to_arm()
        # we should be moving with the ship
        self.wait_groundspeed(9, 11)
        self.takeoff(10)
        # above ship our speed drops to 0
        self.wait_groundspeed(0, 2)
        self.land_and_disarm()
        # ship will have moved on, so we land on the water which isn't moving
        self.wait_groundspeed(0, 2)

    def ParameterValidation(self):
        '''Test parameters are checked for validity'''
        # wait 10 seconds for initialisation
        self.delay_sim_time(10)
        self.progress("invalid; min must be less than max:")
        self.set_parameters({
            "MOT_PWM_MIN": 100,
            "MOT_PWM_MAX": 50,
        })
        self.drain_mav()
        self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX")
        self.progress("invalid; min must be less than max (equal case):")
        self.set_parameters({
            "MOT_PWM_MIN": 100,
            "MOT_PWM_MAX": 100,
        })
        self.drain_mav()
        self.assert_prearm_failure("Motors: Check MOT_PWM_MIN and MOT_PWM_MAX")
        self.progress("Spin min more than 0.3")
        self.set_parameters({
            "MOT_PWM_MIN": 1000,
            "MOT_PWM_MAX": 2000,
            "MOT_SPIN_MIN": 0.5,
        })
        self.drain_mav()
        self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_MIN too high 0.50 > 0.3")
        self.progress("Spin arm more than spin min")
        self.set_parameters({
            "MOT_SPIN_MIN": 0.1,
            "MOT_SPIN_ARM": 0.2,
        })
        self.drain_mav()
        self.assert_prearm_failure("PreArm: Motors: MOT_SPIN_ARM > MOT_SPIN_MIN")

    def SensorErrorFlags(self):
        '''Test we get ERR messages when sensors have issues'''
        self.reboot_sitl()

        for (param_names, param_value, expected_subsys, expected_ecode, desc) in [
                (['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 1, 18, 4, 'unhealthy'),
                (['SIM_BARO_DISABLE', 'SIM_BAR2_DISABLE'], 0, 18, 0, 'healthy'),
                (['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 1, 3, 4, 'unhealthy'),
                (['SIM_MAG1_FAIL', 'SIM_MAG2_FAIL', 'SIM_MAG3_FAIL'], 0, 3, 0, 'healthy'),
        ]:
            sp = dict()
            for name in param_names:
                sp[name] = param_value
            self.set_parameters(sp)
            self.delay_sim_time(1)
            mlog = self.dfreader_for_current_onboard_log()
            success = False
            while True:
                m = mlog.recv_match(type='ERR')
                print("Got (%s)" % str(m))
                if m is None:
                    break
                if m.Subsys == expected_subsys and m.ECode == expected_ecode:  # baro / ecode
                    success = True
                    break
            if not success:
                raise NotAchievedException("Did not find %s log message" % desc)

    def AltEstimation(self):
        '''Test that Alt Estimation is mandatory for ALT_HOLD'''
        self.context_push()
        ex = None
        try:
            # disable barometer so there is no altitude source
            self.set_parameters({
                "SIM_BARO_DISABLE": 1,
                "SIM_BARO2_DISABL": 1,
            })

            self.wait_gps_disable(position_vertical=True)

            # turn off arming checks (mandatory arming checks will still be run)
            self.set_parameter("ARMING_CHECK", 0)

            # delay 12 sec to allow EKF to lose altitude estimate
            self.delay_sim_time(12)

            self.change_mode("ALT_HOLD")
            self.assert_prearm_failure("Need Alt Estimate")

            # force arm vehicle in stabilize to bypass barometer pre-arm checks
            self.change_mode("STABILIZE")
            self.arm_vehicle()
            self.set_rc(3, 1700)
            try:
                self.change_mode("ALT_HOLD", timeout=10)
            except AutoTestTimeoutException:
                self.progress("PASS not able to set mode without Position : %s" % "ALT_HOLD")

            # check that mode change to ALT_HOLD has failed (it should)
            if self.mode_is("ALT_HOLD"):
                raise NotAchievedException("Changed to ALT_HOLD with no altitude estimate")

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.disarm_vehicle(force=True)
        if ex is not None:
            raise ex

    def EKFSource(self):
        '''Check EKF Source Prearms work'''
        self.context_push()
        ex = None
        try:
            self.set_parameters({
                "EK3_ENABLE": 1,
                "AHRS_EKF_TYPE": 3,
            })
            self.wait_ready_to_arm()

            self.start_subtest("bad yaw source")
            self.set_parameter("EK3_SRC3_YAW", 17)
            self.assert_prearm_failure("Check EK3_SRC3_YAW")

            self.context_push()
            self.start_subtest("missing required yaw source")
            self.set_parameters({
                "EK3_SRC3_YAW": 3, # External Yaw with Compass Fallback
                "COMPASS_USE": 0,
                "COMPASS_USE2": 0,
                "COMPASS_USE3": 0,
            })
            self.assert_prearm_failure("EK3 sources require Compass")
            self.context_pop()

        except Exception as e:
            self.disarm_vehicle(force=True)
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        if ex is not None:
            raise ex

    def test_replay_gps_bit(self):
        self.set_parameters({
            "LOG_REPLAY": 1,
            "LOG_DISARMED": 1,
            "EK3_ENABLE": 1,
            "EK2_ENABLE": 1,
            "AHRS_TRIM_X": 0.01,
            "AHRS_TRIM_Y": -0.03,
            "GPS_TYPE2": 1,
            "GPS_POS1_X": 0.1,
            "GPS_POS1_Y": 0.2,
            "GPS_POS1_Z": 0.3,
            "GPS_POS2_X": -0.1,
            "GPS_POS2_Y": -0.02,
            "GPS_POS2_Z": -0.31,
            "INS_POS1_X": 0.12,
            "INS_POS1_Y": 0.14,
            "INS_POS1_Z": -0.02,
            "INS_POS2_X": 0.07,
            "INS_POS2_Y": 0.012,
            "INS_POS2_Z": -0.06,
            "RNGFND1_TYPE": 1,
            "RNGFND1_PIN": 0,
            "RNGFND1_SCALING": 30,
            "RNGFND1_POS_X": 0.17,
            "RNGFND1_POS_Y": -0.07,
            "RNGFND1_POS_Z": -0.005,
            "SIM_SONAR_SCALE": 30,
            "SIM_GPS2_DISABLE": 0,
        })
        self.reboot_sitl()

        self.wait_sensor_state(mavutil.mavlink.MAV_SYS_STATUS_LOGGING, True, True, True)

        current_log_filepath = self.current_onboard_log_filepath()
        self.progress("Current log path: %s" % str(current_log_filepath))

        self.change_mode("LOITER")
        self.wait_ready_to_arm(require_absolute=True)
        self.arm_vehicle()
        self.takeoffAndMoveAway()
        self.do_RTL()

        self.reboot_sitl()

        return current_log_filepath

    def test_replay_beacon_bit(self):
        self.set_parameters({
            "LOG_REPLAY": 1,
            "LOG_DISARMED": 1,
        })

        old_onboard_logs = sorted(self.log_list())
        self.BeaconPosition()
        new_onboard_logs = sorted(self.log_list())

        log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs]
        return log_difference[2]

    def test_replay_optical_flow_bit(self):
        self.set_parameters({
            "LOG_REPLAY": 1,
            "LOG_DISARMED": 1,
        })

        old_onboard_logs = sorted(self.log_list())
        self.OpticalFlowLimits()
        new_onboard_logs = sorted(self.log_list())

        log_difference = [x for x in new_onboard_logs if x not in old_onboard_logs]
        print("log difference: %s" % str(log_difference))
        return log_difference[0]

    def GPSBlending(self):
        '''Test GPS Blending'''
        '''ensure we get dataflash log messages for blended instance'''

        self.context_push()

        ex = None

        try:
            # configure:
            self.set_parameters({
                "GPS_TYPE2": 1,
                "SIM_GPS2_TYPE": 1,
                "SIM_GPS2_DISABLE": 0,
                "GPS_AUTO_SWITCH": 2,
            })
            self.reboot_sitl()

            # ensure we're seeing the second GPS:
            tstart = self.get_sim_time()
            while True:
                if self.get_sim_time_cached() - tstart > 60:
                    raise NotAchievedException("Did not get good GPS2_RAW message")
                m = self.mav.recv_match(type='GPS2_RAW', blocking=True, timeout=1)
                self.progress("%s" % str(m))
                if m is None:
                    continue
                if m.lat == 0:
                    continue
                break

            # create a log we can expect blended data to appear in:
            self.change_mode('LOITER')
            self.wait_ready_to_arm()
            self.arm_vehicle()
            self.delay_sim_time(5)
            self.disarm_vehicle()

            # inspect generated log for messages:
            dfreader = self.dfreader_for_current_onboard_log()
            wanted = set([0, 1, 2])
            seen_primary_change = False
            while True:
                m = dfreader.recv_match(type=["GPS", "EV"]) # disarmed
                if m is None:
                    break
                mtype = m.get_type()
                if mtype == 'GPS':
                    try:
                        wanted.remove(m.I)
                    except KeyError:
                        continue
                elif mtype == 'EV':
                    if m.Id == 67:  # GPS_PRIMARY_CHANGED
                        seen_primary_change = True
                if len(wanted) == 0 and seen_primary_change:
                    break

            if len(wanted):
                raise NotAchievedException("Did not get all three GPS types")
            if not seen_primary_change:
                raise NotAchievedException("Did not see primary change")

        except Exception as e:
            self.progress("Caught exception: %s" %
                          self.get_exception_stacktrace(e))
            ex = e

        self.context_pop()

        self.reboot_sitl()

        if ex is not None:
            raise ex

    def Callisto(self):
        '''Test Callisto'''
        self.customise_SITL_commandline(
            ["--defaults", ','.join(self.model_defaults_filepath('Callisto')), ],
            model="octa-quad:@ROMFS/models/Callisto.json",
            wipe=True,
        )
        self.takeoff(10)
        self.do_RTL()

    def FlyEachFrame(self):
        '''Fly each supported internal frame'''
        vinfo = vehicleinfo.VehicleInfo()
        copter_vinfo_options = vinfo.options[self.vehicleinfo_key()]
        known_broken_frames = {
            'heli-compound': "wrong binary, different takeoff regime",
            'heli-dual': "wrong binary, different takeoff regime",
            'heli': "wrong binary, different takeoff regime",
            'heli-blade360': "wrong binary, different takeoff regime",
        }
        for frame in sorted(copter_vinfo_options["frames"].keys()):
            self.start_subtest("Testing frame (%s)" % str(frame))
            if frame in known_broken_frames:
                self.progress("Actually, no I'm not - it is known-broken (%s)" %
                              (known_broken_frames[frame]))
                continue
            frame_bits = copter_vinfo_options["frames"][frame]
            print("frame_bits: %s" % str(frame_bits))
            if frame_bits.get("external", False):
                self.progress("Actually, no I'm not - it is an external simulation")
                continue
            model = frame_bits.get("model", frame)
            # the model string for Callisto has crap in it.... we
            # should really have another entry in the vehicleinfo data
            # to carry the path to the JSON.
            actual_model = model.split(":")[0]
            defaults = self.model_defaults_filepath(actual_model)
            if type(defaults) != list:
                defaults = [defaults]
            self.customise_SITL_commandline(
                ["--defaults", ','.join(defaults), ],
                model=model,
                wipe=True,
            )

            # add a listener that verifies yaw looks good:
            def verify_yaw(mav, m):
                if m.get_type() != 'ATTITUDE':
                    return
                yawspeed_thresh_rads = math.radians(10)
                if m.yawspeed > yawspeed_thresh_rads:
                    raise NotAchievedException("Excessive yaw on takeoff: %f deg/s > %f deg/s (frame=%s)" %
                                               (math.degrees(m.yawspeed), math.degrees(yawspeed_thresh_rads), frame))
            self.install_message_hook(verify_yaw)
            self.takeoff(10)
            self.remove_message_hook(verify_yaw)
            self.hover()
            self.change_mode('ALT_HOLD')
            self.delay_sim_time(1)

            def verify_rollpitch(mav, m):
                if m.get_type() != 'ATTITUDE':
                    return
                pitch_thresh_rad = math.radians(2)
                if m.pitch > pitch_thresh_rad:
                    raise NotAchievedException("Excessive pitch %f deg > %f deg" %
                                               (math.degrees(m.pitch), math.degrees(pitch_thresh_rad)))
                roll_thresh_rad = math.radians(2)
                if m.roll > roll_thresh_rad:
                    raise NotAchievedException("Excessive roll %f deg > %f deg" %
                                               (math.degrees(m.roll), math.degrees(roll_thresh_rad)))
            self.install_message_hook(verify_rollpitch)
            for i in range(5):
                self.set_rc(4, 2000)
                self.delay_sim_time(0.5)
                self.set_rc(4, 1500)
                self.delay_sim_time(5)
            self.remove_message_hook(verify_rollpitch)

            self.do_RTL()

    def Replay(self):
        '''test replay correctness'''
        self.progress("Building Replay")
        util.build_SITL('tool/Replay', clean=False, configure=False)

        bits = [
            ('GPS', self.test_replay_gps_bit),
            ('Beacon', self.test_replay_beacon_bit),
            ('OpticalFlow', self.test_replay_optical_flow_bit),
        ]
        for (name, func) in bits:
            self.start_subtest("%s" % name)
            self.test_replay_bit(func)

    def test_replay_bit(self, bit):

        self.context_push()
        current_log_filepath = bit()

        self.progress("Running replay on (%s) (%u bytes)" % (
            (current_log_filepath, os.path.getsize(current_log_filepath))
        ))

        util.run_cmd(
            ['build/sitl/tool/Replay', current_log_filepath],
            directory=util.topdir(),
            checkfail=True,
            show=True,
            output=True,
        )

        self.context_pop()

        replay_log_filepath = self.current_onboard_log_filepath()
        self.progress("Replay log path: %s" % str(replay_log_filepath))

        check_replay = util.load_local_module("Tools/Replay/check_replay.py")

        ok = check_replay.check_log(replay_log_filepath, self.progress, verbose=True)
        if not ok:
            raise NotAchievedException("check_replay failed")

    def DefaultIntervalsFromFiles(self):
        '''Test setting default mavlink message intervals from files'''
        ex = None
        intervals_filepath = util.reltopdir("message-intervals-chan0.txt")
        self.progress("Using filepath (%s)" % intervals_filepath)
        try:
            with open(intervals_filepath, "w") as f:
                f.write("""30 50
28 100
29 200
""")
                f.close()

            # other tests may have explicitly set rates, so wipe parameters:
            def custom_stream_rate_setter():
                for stream in mavutil.mavlink.MAV_DATA_STREAM_EXTRA3, mavutil.mavlink.MAV_DATA_STREAM_RC_CHANNELS:
                    self.set_streamrate(5, stream=stream)

            self.customise_SITL_commandline(
                [],
                wipe=True,
                set_streamrate_callback=custom_stream_rate_setter,
            )

            self.assert_message_rate_hz("ATTITUDE", 20)
            self.assert_message_rate_hz("SCALED_PRESSURE", 5)

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        os.unlink(intervals_filepath)

        self.reboot_sitl()

        if ex is not None:
            raise ex

    def BaroDrivers(self):
        '''Test Baro Drivers'''
        sensors = [
            ("MS5611", 2),
        ]
        for (name, bus) in sensors:
            self.context_push()
            if bus is not None:
                self.set_parameter("BARO_EXT_BUS", bus)
            self.set_parameter("BARO_PROBE_EXT", 1 << 2)
            self.reboot_sitl()
            self.wait_ready_to_arm()
            self.arm_vehicle()

            # insert listener to compare airspeeds:
            messages = [None, None, None]

            global count
            count = 0

            def check_pressure(mav, m):
                global count
                m_type = m.get_type()
                count += 1
                # if count > 500:
                #     if press_abs[0] is None or press_abs[1] is None:
                #         raise NotAchievedException("Not receiving messages")
                if m_type == 'SCALED_PRESSURE3':
                    off = 2
                elif m_type == 'SCALED_PRESSURE2':
                    off = 1
                elif m_type == 'SCALED_PRESSURE':
                    off = 0
                else:
                    return

                messages[off] = m

                if None in messages:
                    return
                first = messages[0]
                for msg in messages[1:]:
                    delta_press_abs = abs(first.press_abs - msg.press_abs)
                    if delta_press_abs > 0.5: # 50 Pa leeway
                        raise NotAchievedException("Press_Abs mismatch (press1=%s press2=%s)" % (first, msg))
                    delta_temperature = abs(first.temperature - msg.temperature)
                    if delta_temperature > 300:  # that's 3-degrees leeway
                        raise NotAchievedException("Temperature mismatch (t1=%s t2=%s)" % (first, msg))
            self.install_message_hook_context(check_pressure)
            self.fly_mission("copter_mission.txt", strict=False)
            if None in messages:
                raise NotAchievedException("Missing a message")

            self.context_pop()
        self.reboot_sitl()

    def PositionWhenGPSIsZero(self):
        '''Ensure position doesn't zero when GPS lost'''
        # https://github.com/ArduPilot/ardupilot/issues/14236
        self.progress("arm the vehicle and takeoff in Guided")
        self.takeoff(20, mode='GUIDED')
        self.progress("fly 50m North (or whatever)")
        old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        self.fly_guided_move_global_relative_alt(50, 0, 20)
        self.set_parameter('GPS_TYPE', 0)
        self.drain_mav()
        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'):
                self.progress("Bug not reproduced")
                break
            m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True)
            pos_delta = self.get_distance_int(old_pos, m)
            self.progress("Distance: %f" % pos_delta)
            if pos_delta < 5:
                raise NotAchievedException("Bug reproduced - returned to near origin")
        self.wait_disarmed()
        self.reboot_sitl()

    def SMART_RTL(self):
        '''Check SMART_RTL'''
        self.context_push()
        ex = None
        try:
            self.progress("arm the vehicle and takeoff in Guided")
            self.takeoff(20, mode='GUIDED')
            self.progress("fly around a bit (or whatever)")
            locs = [
                (50, 0, 20),
                (-50, 50, 20),
                (-50, 0, 20),
            ]
            for (lat, lng, alt) in locs:
                self.fly_guided_move_local(lat, lng, alt)

            self.change_mode('SMART_RTL')
            for (lat, lng, alt) in reversed(locs):
                self.wait_distance_to_local_position(
                    (lat, lng, -alt),
                    0,
                    10,
                    timeout=60
                )
            self.wait_disarmed()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e
            self.disarm_vehicle(force=True)

        self.context_pop()

        self.reboot_sitl()

        if ex is not None:
            raise ex

    def get_ground_effect_duration_from_current_onboard_log(self, bit, ignore_multi=False):
        '''returns a duration in seconds we were expecting to interact with
        the ground.  Will die if there's more than one such block of
        time and ignore_multi is not set (will return first duration
        otherwise)
        '''
        ret = []
        dfreader = self.dfreader_for_current_onboard_log()
        seen_expected_start_TimeUS = None
        first = None
        last = None
        while True:
            m = dfreader.recv_match(type="XKF4")
            if m is None:
                break
            last = m
            if first is None:
                first = m
            # self.progress("%s" % str(m))
            expected = m.SS & (1 << bit)
            if expected:
                if seen_expected_start_TimeUS is None:
                    seen_expected_start_TimeUS = m.TimeUS
                    continue
            else:
                if seen_expected_start_TimeUS is not None:
                    duration = (m.TimeUS - seen_expected_start_TimeUS)/1000000.0
                    ret.append(duration)
                    seen_expected_start_TimeUS = None
        if seen_expected_start_TimeUS is not None:
            duration = (last.TimeUS - seen_expected_start_TimeUS)/1000000.0
            ret.append(duration)
        return ret

    def get_takeoffexpected_durations_from_current_onboard_log(self, ignore_multi=False):
        return self.get_ground_effect_duration_from_current_onboard_log(11, ignore_multi=ignore_multi)

    def get_touchdownexpected_durations_from_current_onboard_log(self, ignore_multi=False):
        return self.get_ground_effect_duration_from_current_onboard_log(12, ignore_multi=ignore_multi)

    def ThrowDoubleDrop(self):
        '''Test a more complicated drop-mode scenario'''
        self.progress("Getting a lift to altitude")
        self.set_parameters({
            "SIM_SHOVE_Z": -11,
            "THROW_TYPE": 1,   # drop
            "MOT_SPOOL_TIME": 2,
        })
        self.change_mode('THROW')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        try:
            self.set_parameter("SIM_SHOVE_TIME", 30000)
        except ValueError:
            # the shove resets this to zero
            pass

        self.wait_altitude(100, 1000, timeout=100, relative=True)
        self.context_collect('STATUSTEXT')
        self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10)
        self.wait_statustext("throttle is unlimited - uprighting", check_context=True)
        self.wait_statustext("uprighted - controlling height", check_context=True)
        self.wait_statustext("height achieved - controlling position", check_context=True)
        self.progress("Waiting for still")
        self.wait_speed_vector(Vector3(0, 0, 0))
        self.change_mode('ALT_HOLD')
        self.set_rc(3, 1000)
        self.wait_disarmed(timeout=90)
        self.zero_throttle()

        self.progress("second flight")
        self.upload_square_mission_items_around_location(self.poll_home_position())

        self.set_parameters({
            "THROW_NEXTMODE": 3,  # auto
        })

        self.change_mode('THROW')
        self.wait_ready_to_arm()
        self.arm_vehicle()
        try:
            self.set_parameter("SIM_SHOVE_TIME", 30000)
        except ValueError:
            # the shove resets this to zero
            pass

        self.wait_altitude(100, 1000, timeout=100, relative=True)
        self.wait_statustext("throw detected - spooling motors", check_context=True, timeout=10)
        self.wait_statustext("throttle is unlimited - uprighting", check_context=True)
        self.wait_statustext("uprighted - controlling height", check_context=True)
        self.wait_statustext("height achieved - controlling position", check_context=True)
        self.wait_mode('AUTO')
        self.wait_disarmed(timeout=240)

    def GroundEffectCompensation_takeOffExpected(self):
        '''Test EKF's handling of takeoff-expected'''
        self.change_mode('ALT_HOLD')
        self.set_parameter("LOG_FILE_DSRMROT", 1)
        self.progress("Making sure we'll have a short log to look at")
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.disarm_vehicle()

        # arm the vehicle and let it disarm normally.  This should
        # yield a log where the EKF considers a takeoff imminent until
        # disarm
        self.start_subtest("Check ground effect compensation remains set in EKF while we're at idle on the ground")
        self.arm_vehicle()
        self.wait_disarmed()

        durations = self.get_takeoffexpected_durations_from_current_onboard_log()
        duration = durations[0]
        want = 9
        self.progress("takeoff-expected duration: %fs" % (duration,))
        if duration < want:  # assumes default 10-second DISARM_DELAY
            raise NotAchievedException("Should have been expecting takeoff for longer than %fs (want>%f)" %
                                       (duration, want))

        self.start_subtest("takeoffExpected should be false very soon after we launch into the air")
        self.takeoff(mode='ALT_HOLD', alt_min=5)
        self.change_mode('LAND')
        self.wait_disarmed()
        durations = self.get_takeoffexpected_durations_from_current_onboard_log(ignore_multi=True)
        self.progress("touchdown-durations: %s" % str(durations))
        duration = durations[0]
        self.progress("takeoff-expected-duration %f" % (duration,))
        want_lt = 5
        if duration >= want_lt:
            raise NotAchievedException("Was expecting takeoff for longer than expected; got=%f want<=%f" %
                                       (duration, want_lt))

    def MAV_CMD_CONDITION_YAW_absolute(self):
        self.start_subtest("absolute")
        self.takeoff(20, mode='GUIDED')

        m = self.mav.recv_match(type='VFR_HUD', blocking=True)
        initial_heading = m.heading

        self.progress("Ensuring initial heading is steady")
        target = initial_heading
        self.run_cmd(
            mavutil.mavlink.MAV_CMD_CONDITION_YAW,
            target,  # target angle
            10,  # degrees/second
            1,  # -1 is counter-clockwise, 1 clockwise
            0,  # 1 for relative, 0 for absolute
            0,  # p5
            0,  # p6
            0,  # p7
        )
        self.wait_heading(target, minimum_duration=2, timeout=50)

        degsecond = 2

        def rate_watcher(mav, m):
            if m.get_type() != 'ATTITUDE':
                return
            if abs(math.degrees(m.yawspeed)) > 5*degsecond:
                raise NotAchievedException("Moved too fast (%f>%f)" %
                                           (math.degrees(m.yawspeed), 5*degsecond))
        self.install_message_hook_context(rate_watcher)
        self.progress("Yaw CW 60 degrees")
        target = initial_heading + 60
        part_way_target = initial_heading + 10
        self.run_cmd(
            mavutil.mavlink.MAV_CMD_CONDITION_YAW,
            target,  # target angle
            degsecond,  # degrees/second
            1,  # -1 is counter-clockwise, 1 clockwise
            0,  # 1 for relative, 0 for absolute
            0,  # p5
            0,  # p6
            0,  # p7
        )
        self.wait_heading(part_way_target)
        self.wait_heading(target, minimum_duration=2)

        self.progress("Yaw CCW 60 degrees")
        target = initial_heading
        part_way_target = initial_heading + 30
        self.run_cmd(
            mavutil.mavlink.MAV_CMD_CONDITION_YAW,
            target,  # target angle
            degsecond,  # degrees/second
            -1,  # -1 is counter-clockwise, 1 clockwise
            0,  # 1 for relative, 0 for absolute
            0,  # p5
            0,  # p6
            0,  # p7
        )
        self.wait_heading(part_way_target)
        self.wait_heading(target, minimum_duration=2)

        self.do_RTL()

    def MAV_CMD_CONDITION_YAW_relative(self):
        pass

    def MAV_CMD_CONDITION_YAW(self):
        '''Test response to MAV_CMD_CONDITION_YAW'''
        self.MAV_CMD_CONDITION_YAW_absolute()
        self.MAV_CMD_CONDITION_YAW_relative()

    def GroundEffectCompensation_touchDownExpected(self):
        '''Test EKF's handling of touchdown-expected'''
        self.zero_throttle()
        self.change_mode('ALT_HOLD')
        self.set_parameter("LOG_FILE_DSRMROT", 1)
        self.progress("Making sure we'll have a short log to look at")
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.disarm_vehicle()

        self.start_subtest("Make sure touchdown-expected duration is about right")
        self.takeoff(20, mode='ALT_HOLD')
        self.change_mode('LAND')
        self.wait_disarmed()

        durations = self.get_touchdownexpected_durations_from_current_onboard_log(ignore_multi=True)
        self.progress("touchdown-durations: %s" % str(durations))
        duration = durations[-1]
        expected = 23  # this is the time in the final descent phase of LAND
        if abs(duration - expected) > 5:
            raise NotAchievedException("Was expecting roughly %fs of touchdown expected, got %f" % (expected, duration))

    def upload_square_mission_items_around_location(self, loc):
        alt = 20
        loc.alt = alt
        items = [
            (mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, 0, 0, alt)
        ]

        for (ofs_n, ofs_e) in (20, 20), (20, -20), (-20, -20), (-20, 20), (20, 20):
            items.append((mavutil.mavlink.MAV_CMD_NAV_WAYPOINT, ofs_n, ofs_e, alt))

        items.append((mavutil.mavlink.MAV_CMD_NAV_RETURN_TO_LAUNCH, 0, 0, 0))

        self.upload_simple_relhome_mission(items)

    def RefindGPS(self):
        '''Refind the GPS and attempt to RTL rather than continue to land'''
        # https://github.com/ArduPilot/ardupilot/issues/14236
        self.progress("arm the vehicle and takeoff in Guided")
        self.takeoff(20, mode='GUIDED')
        self.progress("fly 50m North (or whatever)")
        old_pos = self.mav.recv_match(type='GLOBAL_POSITION_INT', blocking=True)
        self.fly_guided_move_global_relative_alt(50, 0, 20)
        self.set_parameter('GPS_TYPE', 0)
        self.drain_mav()
        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > 30 and self.mode_is('LAND'):
                self.progress("Bug not reproduced")
                break
            m = self.assert_receive_message('GLOBAL_POSITION_INT', timeout=1, verbose=True)
            pos_delta = self.get_distance_int(old_pos, m)
            self.progress("Distance: %f" % pos_delta)
            if pos_delta < 5:
                raise NotAchievedException("Bug reproduced - returned to near origin")
        self.set_parameter('GPS_TYPE', 1)
        self.do_RTL()

    def GPSForYaw(self):
        '''Moving baseline GPS yaw'''
        self.context_push()
        self.load_default_params_file("copter-gps-for-yaw.parm")
        self.reboot_sitl()
        ex = None
        try:
            self.wait_gps_fix_type_gte(6, message_type="GPS2_RAW", verbose=True)
            m = self.assert_receive_message("GPS2_RAW")
            self.progress(self.dump_message_verbose(m))
            want = 27000
            if abs(m.yaw - want) > 500:
                raise NotAchievedException("Expected to get GPS-from-yaw (want %f got %f)" % (want, m.yaw))
            self.wait_ready_to_arm()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        self.reboot_sitl()

        if ex is not None:
            raise ex

    def AP_Avoidance(self):
        '''ADSB-based avoidance'''
        self.set_parameters({
            "AVD_ENABLE": 1,
            "ADSB_TYPE": 1,  # mavlink
            "AVD_F_ACTION": 2,  # climb or descend
        })
        self.reboot_sitl()

        self.wait_ready_to_arm()

        here = self.mav.location()

        self.context_push()

        self.start_subtest("F_ALT_MIN zero - disabled, can't arm in face of threat")
        self.set_parameters({
            "AVD_F_ALT_MIN": 0,
        })
        self.wait_ready_to_arm()
        self.test_adsb_send_threatening_adsb_message(here)
        self.delay_sim_time(1)
        self.try_arm(result=False,
                     expect_msg="ADSB threat detected")

        self.wait_ready_to_arm(timeout=60)

        self.context_pop()

        self.start_subtest("F_ALT_MIN 16m relative - arm in face of threat")
        self.context_push()
        self.set_parameters({
            "AVD_F_ALT_MIN": int(16 + here.alt),
        })
        self.wait_ready_to_arm()
        self.test_adsb_send_threatening_adsb_message(here)
#        self.delay_sim_time(1)
        self.arm_vehicle()
        self.disarm_vehicle()
        self.context_pop()

    def PAUSE_CONTINUE(self):
        '''Test MAV_CMD_DO_PAUSE_CONTINUE in AUTO mode'''
        self.load_mission(filename="copter_mission.txt", strict=False)
        self.set_parameter(name="AUTO_OPTIONS", value=3)
        self.change_mode(mode="AUTO")
        self.wait_ready_to_arm()
        self.arm_vehicle()

        self.wait_current_waypoint(wpnum=3, timeout=500)
        self.send_pause_command()
        self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
        self.send_resume_command()

        self.wait_current_waypoint(wpnum=4, timeout=500)
        self.send_pause_command()
        self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
        self.send_resume_command()

        # sending a pause, or resume, to the aircraft twice, doesn't result in reporting a failure
        self.wait_current_waypoint(wpnum=5, timeout=500)
        self.send_pause_command()
        self.send_pause_command()
        self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
        self.send_resume_command()
        self.send_resume_command()

        self.wait_disarmed(timeout=500)

    def PAUSE_CONTINUE_GUIDED(self):
        '''Test MAV_CMD_DO_PAUSE_CONTINUE in GUIDED mode'''
        self.start_subtest("Started test for Pause/Continue in GUIDED mode with LOCATION!")
        self.change_mode(mode="GUIDED")
        self.wait_ready_to_arm()
        self.arm_vehicle()
        self.set_parameter(name="GUID_TIMEOUT", value=120)
        self.user_takeoff(alt_min=30)

        # send vehicle to global position target
        location = self.home_relative_loc_ne(n=300, e=0)
        target_typemask = MAV_POS_TARGET_TYPE_MASK.POS_ONLY
        self.mav.mav.set_position_target_global_int_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # relative altitude frame
            target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE, # target typemask as pos only
            int(location.lat * 1e7), # lat
            int(location.lng * 1e7), # lon
            30, # alt
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0) # yawrate

        self.wait_distance_to_home(distance_min=100, distance_max=150, timeout=120)
        self.send_pause_command()
        self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
        self.send_resume_command()
        self.wait_location(loc=location, timeout=120)

        self.end_subtest("Ended test for Pause/Continue in GUIDED mode with LOCATION!")
        self.start_subtest("Started test for Pause/Continue in GUIDED mode with DESTINATION!")
        self.guided_achieve_heading(heading=270)

        # move vehicle on x direction
        location = self.offset_location_ne(location=self.mav.location(), metres_north=0, metres_east=-300)
        self.mav.mav.set_position_target_global_int_send(
            0, # system time in milliseconds
            1, # target system
            1, # target component
            mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, # coordinate frame MAV_FRAME_BODY_NED
            MAV_POS_TARGET_TYPE_MASK.POS_ONLY, # type mask (pos only)
            int(location.lat*1e7), # position x
            int(location.lng*1e7), # position y
            30, # position z
            0, # velocity x
            0, # velocity y
            0, # velocity z
            0, # accel x
            0, # accel y
            0, # accel z
            0, # yaw
            0) # yaw rate

        self.wait_location(loc=location, accuracy=200, timeout=120)
        self.send_pause_command()
        self.wait_groundspeed(speed_min=0, speed_max=1, minimum_duration=5)
        self.send_resume_command()
        self.wait_location(loc=location, timeout=120)

        self.end_subtest("Ended test for Pause/Continue in GUIDED mode with DESTINATION!")
        self.start_subtest("Started test for Pause/Continue in GUIDED mode with VELOCITY!")

        # give velocity command
        vx, vy, vz_up = (5, 5, 0)
        self.test_guided_local_velocity_target(vx=vx, vy=vy, vz_up=vz_up, timeout=10)

        self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
        self.send_pause_command()
        self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
        self.send_resume_command()
        self.wait_for_local_velocity(vx=vx, vy=vy, vz_up=vz_up, timeout=10)
        self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10)
        self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)

        self.end_subtest("Ended test for Pause/Continue in GUIDED mode with VELOCITY!")
        self.start_subtest("Started test for Pause/Continue in GUIDED mode with ACCELERATION!")

        # give acceleration command
        ax, ay, az_up = (1, 1, 0)
        target_typemask = (MAV_POS_TARGET_TYPE_MASK.POS_IGNORE | MAV_POS_TARGET_TYPE_MASK.VEL_IGNORE |
                           MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)
        self.mav.mav.set_position_target_local_ned_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_LOCAL_NED,
            target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
            0, # x
            0, # y
            0, # z
            0, # vx
            0, # vy
            0, # vz
            ax, # afx
            ay, # afy
            -az_up, # afz
            0, # yaw
            0, # yawrate
        )

        self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10)
        self.send_pause_command()
        self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
        self.send_resume_command()
        self.wait_for_local_velocity(vx=5, vy=5, vz_up=0, timeout=10)
        self.test_guided_local_velocity_target(vx=0, vy=0, vz_up=0, timeout=10)
        self.wait_for_local_velocity(vx=0, vy=0, vz_up=0, timeout=10)
        self.end_subtest("Ended test for Pause/Continue in GUIDED mode with ACCELERATION!")

        # start pause/continue subtest with posvelaccel
        self.start_subtest("Started test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!")
        self.guided_achieve_heading(heading=0)

        # give posvelaccel command
        x, y, z_up = (-300, 0, 30)
        target_typemask = (MAV_POS_TARGET_TYPE_MASK.YAW_IGNORE | MAV_POS_TARGET_TYPE_MASK.YAW_RATE_IGNORE)
        self.mav.mav.set_position_target_local_ned_send(
            0, # timestamp
            1, # target system_id
            1, # target component id
            mavutil.mavlink.MAV_FRAME_LOCAL_NED,
            target_typemask | MAV_POS_TARGET_TYPE_MASK.LAST_BYTE,
            x, # x
            y, # y
            -z_up, # z
            0, # vx
            0, # vy
            0, # vz
            0, # afx
            0, # afy
            0, # afz
            0, # yaw
            0, # yawrate
        )

        self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=400, distance_max=450, timeout=120)
        self.send_pause_command()
        self.wait_for_local_velocity(0, 0, 0, timeout=10)
        self.send_resume_command()
        self.wait_distance_to_local_position(local_position=(x, y, -z_up), distance_min=0, distance_max=10, timeout=120)

        self.end_subtest("Ended test for Pause/Continue in GUIDED mode with POSITION and VELOCITY and ACCELERATION!")
        self.do_RTL(timeout=120)

    def DO_CHANGE_SPEED(self):
        '''Change speed during misison using waypoint items'''
        self.load_mission("mission.txt", strict=False)

        self.set_parameters({
            "AUTO_OPTIONS": 3,
            "ANGLE_MAX": 4500,
        })

        self.change_mode('AUTO')
        self.wait_ready_to_arm()
        self.arm_vehicle()

        self.wait_current_waypoint(2)
        self.wait_groundspeed(
            14.5, 15.5,
            minimum_duration=10,
            timeout=60,
        )

        self.wait_current_waypoint(4)
        self.wait_groundspeed(
            9.5, 11.5,
            minimum_duration=10,
            timeout=60,
        )

        self.set_parameter("ANGLE_MAX", 6000)
        self.wait_current_waypoint(6)
        self.wait_groundspeed(
            15.5, 16.5,
            minimum_duration=10,
            timeout=60,
        )

        self.wait_disarmed()

    def AUTO_LAND_TO_BRAKE(self):
        '''ensure terrain altitude is taken into account when braking'''
        self.load_mission('mission.txt')
        home_loc = self.get_home_tuple_from_mission("mission.txt")

        self.set_parameters({
            "PLND_ACC_P_NSE": 2.500000,
            "PLND_ALT_MAX": 8.000000,
            "PLND_ALT_MIN": 0.750000,
            "PLND_BUS": -1,
            "PLND_CAM_POS_X": 0.000000,
            "PLND_CAM_POS_Y": 0.000000,
            "PLND_CAM_POS_Z": 0.000000,
            "PLND_ENABLED": 1,
            "PLND_EST_TYPE": 1,
            "PLND_LAG": 0.020000,
            "PLND_LAND_OFS_X": 0.000000,
            "PLND_LAND_OFS_Y": 0.000000,
            "PLND_OPTIONS": 0,
            "PLND_RET_BEHAVE": 0,
            "PLND_RET_MAX": 4,
            "PLND_STRICT": 1,
            "PLND_TIMEOUT": 4.000000,
            "PLND_TYPE": 4,
            "PLND_XY_DIST_MAX": 2.500000,
            "PLND_YAW_ALIGN": 0.000000,

            "SIM_PLD_ALT_LMT": 15.000000,
            "SIM_PLD_DIST_LMT": 10.000000,
            "SIM_PLD_ENABLE": 1,
            "SIM_PLD_HEIGHT": 942.0000000,
            "SIM_PLD_LAT": -20.558929,
            "SIM_PLD_LON": -47.415035,
            "SIM_PLD_RATE": 100,
            "SIM_PLD_TYPE": 1,
            "SIM_PLD_YAW": 87,

            "SIM_SONAR_SCALE": 12,
        })

        self.set_analog_rangefinder_parameters()

        self.customise_SITL_commandline([
            "--home", "%s,%s,%s,%s" % home_loc
        ])

        self.set_parameter('AUTO_OPTIONS', 3)
        self.change_mode('AUTO')
        self.wait_ready_to_arm()
        self.arm_vehicle()

        self.wait_current_waypoint(7)
        self.wait_altitude(10, 15, relative=True, timeout=60)
        self.change_mode('BRAKE')
        # monitor altitude here
        self.wait_altitude(10, 15, relative=True, minimum_duration=20)
        self.change_mode('AUTO')
        self.wait_disarmed()

    def MAVLandedStateTakeoff(self):
        '''check EXTENDED_SYS_STATE message'''
        ex = None
        try:
            self.set_message_rate_hz(id=mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, rate_hz=1)
            self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
                                         landed_state=mavutil.mavlink.MAV_LANDED_STATE_ON_GROUND, timeout=10)
            self.load_mission(filename="copter_mission.txt")
            self.set_parameter(name="AUTO_OPTIONS", value=3)
            self.change_mode(mode="AUTO")
            self.wait_ready_to_arm()
            self.arm_vehicle()
            self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
                                         landed_state=mavutil.mavlink.MAV_LANDED_STATE_TAKEOFF, timeout=30)
            self.wait_extended_sys_state(vtol_state=mavutil.mavlink.MAV_VTOL_STATE_MC,
                                         landed_state=mavutil.mavlink.MAV_LANDED_STATE_IN_AIR, timeout=60)
            self.land_and_disarm()
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.set_message_rate_hz(mavutil.mavlink.MAVLINK_MSG_ID_EXTENDED_SYS_STATE, -1)
        if ex is not None:
            raise ex

    def ATTITUDE_FAST(self):
        '''ensure that when ATTITDE_FAST is set we get many messages'''
        self.context_push()
        ex = None
        try:
            old = self.get_parameter('LOG_BITMASK')
            new = int(old) | (1 << 0)  # see defines.h
            self.set_parameters({
                "LOG_BITMASK": new,
                "LOG_DISARMED": 1,
            })
            path = self.generate_rate_sample_log()

        except Exception as e:
            self.print_exception_caught(e)
            ex = e

        self.context_pop()

        self.reboot_sitl()

        if ex is not None:
            raise ex

        self.delay_sim_time(10)  # NFI why this is required

        self.check_dflog_message_rates(path, {
            'ATT': 400,
        })

    def BaseLoggingRates(self):
        '''ensure messages come out at specific rates'''
        path = self.generate_rate_sample_log()
        self.delay_sim_time(10)  # NFI why this is required
        self.check_dflog_message_rates(path, {
            "ATT": 10,
            "IMU": 25,
        })

    def FETtecESC_flight(self):
        '''fly with servo outputs from FETtec ESC'''
        self.start_subtest("FETtec ESC flight")
        num_wp = self.load_mission("copter_mission.txt", strict=False)
        self.fly_loaded_mission(num_wp)

    def FETtecESC_esc_power_checks(self):
        '''Make sure state machine copes with ESCs rebooting'''
        self.start_subtest("FETtec ESC reboot")
        self.wait_ready_to_arm()
        self.context_collect('STATUSTEXT')
        self.progress("Turning off an ESC off ")
        mask = int(self.get_parameter("SIM_FTOWESC_POW"))

        for mot_id_to_kill in 1, 2:
            self.progress("Turning ESC=%u off" % mot_id_to_kill)
            self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill))
            self.delay_sim_time(1)
            self.assert_prearm_failure("are not running")
            self.progress("Turning it back on")
            self.set_parameter("SIM_FTOWESC_POW", mask)
            self.wait_ready_to_arm()

            self.progress("Turning ESC=%u off (again)" % mot_id_to_kill)
            self.set_parameter("SIM_FTOWESC_POW", mask & ~(1 << mot_id_to_kill))
            self.delay_sim_time(1)
            self.assert_prearm_failure("are not running")
            self.progress("Turning it back on")
            self.set_parameter("SIM_FTOWESC_POW", mask)
            self.wait_ready_to_arm()

        self.progress("Turning all ESCs off")
        self.set_parameter("SIM_FTOWESC_POW", 0)
        self.delay_sim_time(1)
        self.assert_prearm_failure("are not running")
        self.progress("Turning them back on")
        self.set_parameter("SIM_FTOWESC_POW", mask)
        self.wait_ready_to_arm()

    def fettec_assert_bad_mask(self, mask):
        '''assert the mask is bad for fettec driver'''
        self.start_subsubtest("Checking mask (%s) is bad" % (mask,))
        self.context_push()
        self.set_parameter("SERVO_FTW_MASK", mask)
        self.reboot_sitl()
        self.delay_sim_time(12)  # allow accels/gyros to be happy
        tstart = self.get_sim_time()
        while True:
            if self.get_sim_time_cached() - tstart > 20:
                raise NotAchievedException("Expected mask to be only problem within 20 seconds")
            try:
                self.assert_prearm_failure("Invalid motor mask")
                break
            except NotAchievedException:
                self.delay_sim_time(1)
        self.context_pop()
        self.reboot_sitl()

    def fettec_assert_good_mask(self, mask):
        '''assert the mask is bad for fettec driver'''
        self.start_subsubtest("Checking mask (%s) is good" % (mask,))
        self.context_push()
        self.set_parameter("SERVO_FTW_MASK", mask)
        self.reboot_sitl()
        self.wait_ready_to_arm()
        self.context_pop()
        self.reboot_sitl()

    def FETtecESC_safety_switch(self):
        mot = self.find_first_set_bit(int(self.get_parameter("SERVO_FTW_MASK"))) + 1
        self.wait_esc_telem_rpm(mot, 0, 0)
        self.wait_ready_to_arm()
        self.context_push()
        self.set_parameter("DISARM_DELAY", 0)
        self.arm_vehicle()
        # we have to wait for a while for the arming tone to go out
        # before the motors will spin:
        self.wait_esc_telem_rpm(
            esc=mot,
            rpm_min=17640,
            rpm_max=17640,
            minimum_duration=2,
            timeout=5,
        )
        self.set_safetyswitch_on()
        self.wait_esc_telem_rpm(mot, 0, 0)
        self.set_safetyswitch_off()
        self.wait_esc_telem_rpm(
            esc=mot,
            rpm_min=17640,
            rpm_max=17640,
            minimum_duration=2,
            timeout=5,
        )
        self.context_pop()
        self.wait_disarmed()

    def FETtecESC_btw_mask_checks(self):
        '''ensure prearm checks work as expected'''
        for bad_mask in [0b1000000000000000, 0b10100000000000000]:
            self.fettec_assert_bad_mask(bad_mask)
        for good_mask in [0b00001, 0b00101, 0b110000000000]:
            self.fettec_assert_good_mask(good_mask)

    def FETtecESC(self):
        '''Test FETtecESC'''
        self.set_parameters({
            "SERIAL5_PROTOCOL": 38,
            "SERVO_FTW_MASK": 0b11101000,
            "SIM_FTOWESC_ENA": 1,
            "SERVO1_FUNCTION": 0,
            "SERVO2_FUNCTION": 0,
            "SERVO3_FUNCTION": 0,
            "SERVO4_FUNCTION": 33,
            "SERVO5_FUNCTION": 0,
            "SERVO6_FUNCTION": 34,
            "SERVO7_FUNCTION": 35,
            "SERVO8_FUNCTION": 36,
            "SIM_ESC_TELEM": 0,
        })
        self.customise_SITL_commandline(["--uartF=sim:fetteconewireesc"])
        self.FETtecESC_safety_switch()
        self.FETtecESC_esc_power_checks()
        self.FETtecESC_btw_mask_checks()
        self.FETtecESC_flight()

    def PerfInfo(self):
        '''Test Scheduler PerfInfo output'''
        self.set_parameter('SCHED_OPTIONS', 1)  # enable gathering
        # sometimes we need to trigger collection....
        content = self.fetch_file_via_ftp("@SYS/tasks.txt")
        self.delay_sim_time(5)
        content = self.fetch_file_via_ftp("@SYS/tasks.txt")
        self.progress("Got content (%s)" % str(content))

        lines = content.split("\n")

        if not lines[0].startswith("TasksV2"):
            raise NotAchievedException("Expected TasksV2 as first line first not (%s)" % lines[0])
        # last line is empty, so -2 here
        if not lines[-2].startswith("AP_Vehicle::update_arming"):
            raise NotAchievedException("Expected EFI last not (%s)" % lines[-2])

    def RTL_TO_RALLY(self, target_system=1, target_component=1):
        '''Check RTL to rally point'''
        self.wait_ready_to_arm()
        rally_loc = self.home_relative_loc_ne(50, -25)
        rally_alt = 37
        items = [
            self.mav.mav.mission_item_int_encode(
                target_system,
                target_component,
                0, # seq
                mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT,
                mavutil.mavlink.MAV_CMD_NAV_RALLY_POINT,
                0, # current
                0, # autocontinue
                0, # p1
                0, # p2
                0, # p3
                0, # p4
                int(rally_loc.lat * 1e7), # latitude
                int(rally_loc.lng * 1e7), # longitude
                rally_alt, # altitude
                mavutil.mavlink.MAV_MISSION_TYPE_RALLY),
        ]
        self.upload_using_mission_protocol(
            mavutil.mavlink.MAV_MISSION_TYPE_RALLY,
            items
        )
        self.set_parameters({
            'RALLY_INCL_HOME': 0,
        })
        self.takeoff(10)
        self.change_mode('RTL')
        self.wait_location(rally_loc)
        self.assert_altitude(rally_alt, relative=True)
        self.progress("Ensuring we're descending")
        self.wait_altitude(20, 25, relative=True)
        self.change_mode('LOITER')
        self.progress("Flying home")
        self.clear_mission(mavutil.mavlink.MAV_MISSION_TYPE_RALLY)
        self.change_mode('RTL')
        self.wait_disarmed()
        self.assert_at_home()

    def NoRCOnBootPreArmFailure(self):
        '''Ensure we can't arm with no RC on boot if THR_FS_VALUE set'''
        self.context_push()
        for rc_failure_mode in 1, 2:
            self.set_parameters({
                "SIM_RC_FAIL": rc_failure_mode,
            })
            self.reboot_sitl()
            if rc_failure_mode == 1:
                self.assert_prearm_failure("RC not found",
                                           other_prearm_failures_fatal=False)
            elif rc_failure_mode == 2:
                self.assert_prearm_failure("Throttle below failsafe",
                                           other_prearm_failures_fatal=False)
        self.context_pop()
        self.reboot_sitl()

    def IMUConsistency(self):
        '''test IMUs must be consistent with one another'''
        self.wait_ready_to_arm()

        self.start_subsubtest("prearm checks for accel inconsistency")
        self.context_push()
        self.set_parameters({
            "SIM_ACC1_BIAS_X": 5,
        })
        self.assert_prearm_failure("Accels inconsistent")
        self.context_pop()
        tstart = self.get_sim_time()
        self.wait_ready_to_arm()
        if self.get_sim_time() - tstart < 8:
            raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset")

        self.start_subsubtest("prearm checks for gyro inconsistency")
        self.context_push()
        self.set_parameters({
            "SIM_GYR1_BIAS_X": math.radians(10),
        })
        self.assert_prearm_failure("Gyros inconsistent")
        self.context_pop()
        tstart = self.get_sim_time()
        self.wait_ready_to_arm()
        if self.get_sim_time() - tstart < 8:
            raise NotAchievedException("Should take 10 seconds to become armableafter IMU upset")

    def Sprayer(self):
        """Test sprayer functionality."""
        self.context_push()
        ex = None
        try:
            rc_ch = 9
            pump_ch = 5
            spinner_ch = 6
            pump_ch_min = 1050
            pump_ch_trim = 1520
            pump_ch_max = 1950
            spinner_ch_min = 975
            spinner_ch_trim = 1510
            spinner_ch_max = 1975

            self.set_parameters({
                "SPRAY_ENABLE": 1,

                "SERVO%u_FUNCTION" % pump_ch: 22,
                "SERVO%u_MIN" % pump_ch: pump_ch_min,
                "SERVO%u_TRIM" % pump_ch: pump_ch_trim,
                "SERVO%u_MAX" % pump_ch: pump_ch_max,

                "SERVO%u_FUNCTION" % spinner_ch: 23,
                "SERVO%u_MIN" % spinner_ch: spinner_ch_min,
                "SERVO%u_TRIM" % spinner_ch: spinner_ch_trim,
                "SERVO%u_MAX" % spinner_ch: spinner_ch_max,

                "SIM_SPR_ENABLE": 1,
                "SIM_SPR_PUMP": pump_ch,
                "SIM_SPR_SPIN": spinner_ch,

                "RC%u_OPTION" % rc_ch: 15,
                "LOG_DISARMED": 1,
            })

            self.reboot_sitl()

            self.wait_ready_to_arm()
            self.arm_vehicle()

            self.progress("test bootup state - it's zero-output!")
            self.wait_servo_channel_value(spinner_ch, 0)
            self.wait_servo_channel_value(pump_ch, 0)

            self.progress("Enable sprayer")
            self.set_rc(rc_ch, 2000)

            self.progress("Testing zero-speed state")
            self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
            self.wait_servo_channel_value(pump_ch, pump_ch_min)

            self.progress("Testing turning it off")
            self.set_rc(rc_ch, 1000)
            self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
            self.wait_servo_channel_value(pump_ch, pump_ch_min)

            self.progress("Testing turning it back on")
            self.set_rc(rc_ch, 2000)
            self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
            self.wait_servo_channel_value(pump_ch, pump_ch_min)

            self.takeoff(30, mode='LOITER')

            self.progress("Testing speed-ramping")
            self.set_rc(1, 1700) # start driving forward

            # this is somewhat empirical...
            self.wait_servo_channel_value(pump_ch, 1458, timeout=60)

            self.progress("Turning it off again")
            self.set_rc(rc_ch, 1000)
            self.wait_servo_channel_value(spinner_ch, spinner_ch_min)
            self.wait_servo_channel_value(pump_ch, pump_ch_min)

            self.start_subtest("Checking mavlink commands")
            self.progress("Starting Sprayer")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SPRAYER,
                         1,  # p1
                         0,  # p2
                         0,  # p3
                         0,  # p4
                         0,  # p5
                         0,  # p6
                         0)  # p7

            self.progress("Testing speed-ramping")
            self.wait_servo_channel_value(pump_ch, 1458, timeout=60, comparator=operator.gt)
            self.start_subtest("Stopping Sprayer")
            self.run_cmd(mavutil.mavlink.MAV_CMD_DO_SPRAYER,
                         0,  # p1
                         0,  # p2
                         0,  # p3
                         0,  # p4
                         0,  # p5
                         0,  # p6
                         0)  # p7
            self.wait_servo_channel_value(pump_ch, pump_ch_min)

            self.progress("Sprayer OK")
        except Exception as e:
            self.print_exception_caught(e)
            ex = e
        self.context_pop()
        self.disarm_vehicle(force=True)
        self.reboot_sitl()
        if ex:
            raise ex

    def tests1a(self):
        '''return list of all tests'''
        ret = super(AutoTestCopter, self).tests()  # about 5 mins and ~20 initial tests from autotest/common.py
        ret.extend([
             self.NavDelayTakeoffAbsTime,
             self.NavDelayAbsTime,
             self.NavDelay,
             self.GuidedSubModeChange,
             self.MAV_CMD_CONDITION_YAW,
             self.LoiterToAlt,
             self.PayLoadPlaceMission,
             self.PrecisionLoiterCompanion,
             self.Landing,
             self.PrecisionLanding,
             self.SetModesViaModeSwitch,
             self.SetModesViaAuxSwitch,
             self.AuxSwitchOptions,
             self.AuxFunctionsInMission,
             self.AutoTune,
             self.AutoTuneYawD,
             self.NoRCOnBootPreArmFailure,
        ])
        return ret

    def tests1b(self):
        '''return list of all tests'''
        ret = ([
             self.ThrowMode,
             self.BrakeMode,
             self.RecordThenPlayMission,
             self.ThrottleFailsafe,
             self.GCSFailsafe,
             self.CustomController,
        ])
        return ret

    def tests1c(self):
        '''return list of all tests'''
        ret = ([
             self.BatteryFailsafe,
             self.VibrationFailsafe,
             self.EK3AccelBias,
             self.StabilityPatch,
             self.OBSTACLE_DISTANCE_3D,
             self.AC_Avoidance_Proximity,
             self.AC_Avoidance_Fence,
             self.AC_Avoidance_Beacon,
             self.BaroWindCorrection,
             self.SetpointGlobalPos,
             self.ThrowDoubleDrop,
             self.SetpointGlobalVel,
             self.SplineTerrain,
             self.TakeoffCheck,
        ])
        return ret

    def tests1d(self):
        '''return list of all tests'''
        ret = ([
             self.HorizontalFence,
             self.HorizontalAvoidFence,
             self.MaxAltFence,
             self.MinAltFence,
             self.FenceFloorEnabledLanding,
             self.AutoTuneSwitch,
             self.GPSGlitchLoiter,
             self.GPSGlitchLoiter2,
             self.GPSGlitchAuto,
             self.ModeAltHold,
             self.ModeLoiter,
             self.SimpleMode,
             self.SuperSimpleCircle,
             self.ModeCircle,
             self.MagFail,
             self.OpticalFlow,
             self.OpticalFlowLimits,
             self.OpticalFlowCalibration,
             self.MotorFail,
             self.ModeFlip,
             self.CopterMission,
             self.TakeoffAlt,
             self.SplineLastWaypoint,
             self.Gripper,
             self.TestLocalHomePosition,
             self.TestGripperMission,
             self.VisionPosition,
             self.ATTITUDE_FAST,
             self.BaseLoggingRates,
             self.BodyFrameOdom,
             self.GPSViconSwitching,
        ])
        return ret

    def tests1e(self):
        '''return list of all tests'''
        ret = ([
             self.BeaconPosition,
             self.RTLSpeed,
             self.Mount,
             self.MountYawVehicleForMountROI,
             self.Button,
             self.ShipTakeoff,
             self.RangeFinder,
             self.BaroDrivers,
             self.SurfaceTracking,
             self.Parachute,
             self.ParameterChecks,
             self.ManualThrottleModeChange,
             self.MANUAL_CONTROL,
             self.ModeZigZag,
             self.PosHoldTakeOff,
             self.ModeFollow,
             self.RangeFinderDrivers,
             self.RangeFinderDriversMaxAlt,
             self.MaxBotixI2CXL,
             self.MAVProximity,
             self.ParameterValidation,
             self.AltTypes,
             self.PAUSE_CONTINUE,
             self.PAUSE_CONTINUE_GUIDED,
             self.RichenPower,
             self.IE24,
             self.MAVLandedStateTakeoff,
             self.Weathervane,
        ])
        return ret

    def tests2a(self):
        '''return list of all tests'''
        ret = ([
            # something about SITLCompassCalibration appears to fail
            # this one, so we put it first:
            self.FixedYawCalibration,

            # we run this single 8min-and-40s test on its own, apart
            #   from requiring FixedYawCalibration right before it
            #   because without it, it fails to calibrate this
            #   autotest appears to interfere with
            #   FixedYawCalibration, no idea why.
            self.SITLCompassCalibration,
        ])
        return ret

    def ScriptMountPOI(self):
        '''test the MountPOI example script'''
        self.context_push()

        self.install_terrain_handlers_context()
        self.set_parameters({
            "SCR_ENABLE": 1,
            "RC12_OPTION": 300,
        })
        self.setup_servo_mount()
        self.reboot_sitl()
        self.set_rc(6, 1300)
        self.install_applet_script_context('mount-poi.lua')
        self.reboot_sitl()
        self.wait_ready_to_arm()
        self.context_collect('STATUSTEXT')
        self.set_rc(12, 2000)
        self.wait_statustext('POI.*-35.*149', check_context=True, regex=True)
        self.set_rc(12, 1000)

        self.context_pop()
        self.reboot_sitl()

    def AHRSTrimLand(self):
        '''test land detector with significant AHRS trim'''
        self.context_push()
        self.set_parameters({
            "SIM_ACC_TRIM_X": 0.12,
            "AHRS_TRIM_X": 0.12,
        })
        self.reboot_sitl()
        self.wait_ready_to_arm()
        self.takeoff(alt_min=20, mode='LOITER')
        self.land_and_disarm()
        self.context_pop()
        self.reboot_sitl()

    def GuidedYawRate(self):
        '''ensuer guided yaw rate is not affected by rate of sewt-attitude messages'''
        self.takeoff(30, mode='GUIDED')
        rates = {}
        for rate in 1, 10:
            # command huge yaw rate for a while
            tstart = self.get_sim_time()
            interval = 1/rate
            yawspeed_rads_sum = 0
            yawspeed_rads_count = 0
            last_sent = 0
            while True:
                self.drain_mav()
                tnow = self.get_sim_time_cached()
                if tnow - last_sent > interval:
                    self.do_yaw_rate(60)  # this is... unlikely
                    last_sent = tnow
                if tnow - tstart < 5:  # let it spin up to speed first
                    continue
                yawspeed_rads_sum += self.mav.messages['ATTITUDE'].yawspeed
                yawspeed_rads_count += 1
                if tnow - tstart > 15:  # 10 seconds of measurements
                    break
            yawspeed_degs = math.degrees(yawspeed_rads_sum / yawspeed_rads_count)
            rates[rate] = yawspeed_degs
            self.progress("Input rate %u hz: average yaw rate %f deg/s" % (rate, yawspeed_degs))

        if rates[10] < rates[1] * 0.95:
            raise NotAchievedException("Guided yaw rate slower for higher rate updates")

        self.do_RTL()

    def tests2b(self):  # this block currently around 9.5mins here
        '''return list of all tests'''
        ret = ([
            self.MotorVibration,
            Test(self.DynamicNotches, attempts=4),
            self.PositionWhenGPSIsZero,
            Test(self.DynamicRpmNotches, attempts=4),
            self.RefindGPS,
            Test(self.GyroFFT, attempts=1, speedup=8),
            Test(self.GyroFFTHarmonic, attempts=4, speedup=8),
            Test(self.GyroFFTAverage, attempts=1, speedup=8),
            Test(self.GyroFFTContinuousAveraging, attempts=4, speedup=8),
            self.GyroFFTPostFilter,
            self.GyroFFTMotorNoiseCheck,
            self.CompassReordering,
            self.CRSF,
            self.MotorTest,
            self.AltEstimation,
            self.EKFSource,
            self.GSF,
            self.AP_Avoidance,
            self.SMART_RTL,
            self.RTL_TO_RALLY,
            self.FlyEachFrame,
            self.GPSBlending,
            self.DataFlash,
            Test(self.DataFlashErase, attempts=8),
            self.Callisto,
            self.PerfInfo,
            self.Replay,
            self.FETtecESC,
            self.ProximitySensors,
            self.GroundEffectCompensation_touchDownExpected,
            self.GroundEffectCompensation_takeOffExpected,
            self.DO_CHANGE_SPEED,
            self.AUTO_LAND_TO_BRAKE,
            self.WPNAV_SPEED,
            self.WPNAV_SPEED_UP,
            self.WPNAV_SPEED_DN,
            self.SensorErrorFlags,
            self.GPSForYaw,
            self.DefaultIntervalsFromFiles,
            self.GPSTypes,
            self.MultipleGPS,
            self.WatchAlts,
            self.GuidedEKFLaneChange,
            self.Sprayer,
            self.EK3_RNG_USE_HGT,
            self.TerrainDBPreArm,
            self.ThrottleGainBoost,
            self.ScriptMountPOI,
            self.FlyMissionTwice,
            self.IMUConsistency,
            self.AHRSTrimLand,
            self.GuidedYawRate,
            self.NoArmWithoutMissionItems,
        ])
        return ret

    def testcan(self):
        ret = ([
            self.CANGPSCopterMission,
        ])
        return ret

    def tests(self):
        ret = []
        ret.extend(self.tests1a())
        ret.extend(self.tests1b())
        ret.extend(self.tests1c())
        ret.extend(self.tests1d())
        ret.extend(self.tests1e())
        ret.extend(self.tests2a())
        ret.extend(self.tests2b())
        return ret

    def disabled_tests(self):
        return {
            "Parachute": "See https://github.com/ArduPilot/ardupilot/issues/4702",
            "HorizontalAvoidFence": "See https://github.com/ArduPilot/ardupilot/issues/11525",
            "AltEstimation": "See https://github.com/ArduPilot/ardupilot/issues/15191",
            "GroundEffectCompensation_takeOffExpected": "Flapping",
            "GroundEffectCompensation_touchDownExpected": "Flapping",
            "FlyMissionTwice": "See https://github.com/ArduPilot/ardupilot/pull/18561",
        }


class AutoTestCopterTests1a(AutoTestCopter):
    def tests(self):
        return self.tests1a()


class AutoTestCopterTests1b(AutoTestCopter):
    def tests(self):
        return self.tests1b()


class AutoTestCopterTests1c(AutoTestCopter):
    def tests(self):
        return self.tests1c()


class AutoTestCopterTests1d(AutoTestCopter):
    def tests(self):
        return self.tests1d()


class AutoTestCopterTests1e(AutoTestCopter):
    def tests(self):
        return self.tests1e()


class AutoTestCopterTests2a(AutoTestCopter):
    def tests(self):
        return self.tests2a()


class AutoTestCopterTests2b(AutoTestCopter):
    def tests(self):
        return self.tests2b()


class AutoTestCAN(AutoTestCopter):

    def tests(self):
        return self.testcan()