/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* multicopter frame simulator class */ #include "SIM_Frame.h" #include #include #include #include #include using namespace SITL; static Motor quad_plus_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), }; static Motor quad_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), }; // motor order to match betaflight conventions // See: https://fpvfrenzy.com/betaflight-motor-order/ static Motor quad_bf_x_motors[] = { Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,1), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), }; // motor order to match betaflight conventions, reversed direction static Motor quad_bf_x_rev_motors[] = { Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), }; // motor order to match DJI conventions // See: https://forum44.djicdn.com/data/attachment/forum/201711/26/172348bppvtt1ot1nrtp5j.jpg static Motor quad_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), }; // motor order so that test order matches motor order ("clockwise X") static Motor quad_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), }; static Motor tiltquad_h_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, -1, 0, 0, 7, 10, -90), }; static Motor hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor hexax_motors[] = { Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4) }; static Motor hexa_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_3, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_6, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2) }; static Motor hexa_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6) }; static Motor octa_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3) }; static Motor octa_dji_x_motors[] = { Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_3, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_4, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_7, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_8, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2) }; static Motor octa_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8) }; static Motor octa_quad_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6) }; static Motor octa_quad_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8) }; static Motor dodeca_hexa_motors[] = { Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4), Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7), Motor(AP_MOTORS_MOT_8, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8), Motor(AP_MOTORS_MOT_9, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10), Motor(AP_MOTORS_MOT_11, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11), Motor(AP_MOTORS_MOT_12, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12) }; static Motor deca_motors[] = { Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_9, -72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10) }; static Motor deca_cw_x_motors[] = { Motor(AP_MOTORS_MOT_1, 18, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, 54, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2), Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_4, 126, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 162, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5), Motor(AP_MOTORS_MOT_6, -162, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6), Motor(AP_MOTORS_MOT_7, -126, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7), Motor(AP_MOTORS_MOT_8, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8), Motor(AP_MOTORS_MOT_9, -54, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9), Motor(AP_MOTORS_MOT_10, -18, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10) }; static Motor tri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0), }; static Motor tilttri_vectored_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 7, 10, -90), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2) }; static Motor y6_motors[] = { Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2), Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1), Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3) }; /* FireflyY6 is a Y6 with front motors tiltable using servo on channel 9 (output 8) */ static Motor firefly_motors[] = { Motor(AP_MOTORS_MOT_1, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3), Motor(AP_MOTORS_MOT_2, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4), Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2, -1, 0, 0, 6, 0, -90), Motor(AP_MOTORS_MOT_6, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6, -1, 0, 0, 6, 0, -90) }; /* table of supported frame types. String order is important for partial name matching */ static Frame supported_frames[] = { Frame("+", 4, quad_plus_motors), Frame("quad", 4, quad_plus_motors), Frame("copter", 4, quad_plus_motors), Frame("x", 4, quad_x_motors), Frame("bfxrev", 4, quad_bf_x_rev_motors), Frame("bfx", 4, quad_bf_x_motors), Frame("djix", 4, quad_dji_x_motors), Frame("cwx", 4, quad_cw_x_motors), Frame("tilthvec", 4, tiltquad_h_vectored_motors), Frame("hexax", 6, hexax_motors), Frame("hexa-cwx", 6, hexa_cw_x_motors), Frame("hexa-dji", 6, hexa_dji_x_motors), Frame("hexa", 6, hexa_motors), Frame("octa-cwx", 8, octa_cw_x_motors), Frame("octa-dji", 8, octa_dji_x_motors), Frame("octa-quad-cwx",8, octa_quad_cw_x_motors), Frame("octa-quad", 8, octa_quad_motors), Frame("octa", 8, octa_motors), Frame("deca", 10, deca_motors), Frame("deca-cwx", 10, deca_cw_x_motors), Frame("dodeca-hexa", 12, dodeca_hexa_motors), Frame("tri", 3, tri_motors), Frame("tilttrivec",3, tilttri_vectored_motors), Frame("tilttri", 3, tilttri_motors), Frame("y6", 6, y6_motors), Frame("firefly", 6, firefly_motors) }; // get air density in kg/m^3 float Frame::get_air_density(float alt_amsl) const { float sigma, delta, theta; AP_Baro::SimpleAtmosphere(alt_amsl * 0.001f, sigma, delta, theta); const float air_pressure = SSL_AIR_PRESSURE * delta; return air_pressure / (ISA_GAS_CONSTANT * (C_TO_KELVIN(model.refTempC))); } #if USE_PICOJSON /* load frame specific parameters from a json file if available */ void Frame::load_frame_params(const char *model_json) { char *fname = nullptr; struct stat st; if (AP::FS().stat(model_json, &st) == 0) { fname = strdup(model_json); } else { IGNORE_RETURN(asprintf(&fname, "@ROMFS/models/%s", model_json)); if (AP::FS().stat(model_json, &st) != 0) { AP_HAL::panic("%s failed to load\n", model_json); } } if (fname == nullptr) { AP_HAL::panic("%s failed to load\n", model_json); } ::printf("Loading model %s\n", fname); int fd = AP::FS().open(model_json, O_RDONLY); if (fd == -1) { AP_HAL::panic("%s failed to load\n", model_json); } char buf[st.st_size+1]; memset(buf, '\0', sizeof(buf)); if (AP::FS().read(fd, buf, st.st_size) != st.st_size) { AP_HAL::panic("%s failed to load\n", model_json); } AP::FS().close(fd); char *start = strchr(buf, '{'); if (!start) { AP_HAL::panic("Invalid json %s", model_json); } free(fname); /* remove comments, as not allowed by the parser */ for (char *p = strchr(start,'#'); p; p=strchr(p+1, '#')) { // clear to end of line do { *p++ = ' '; } while (*p != '\n' && *p != '\r' && *p); } picojson::value obj; std::string err = picojson::parse(obj, start); if (!err.empty()) { AP_HAL::panic("Failed to load %s: %s", model_json, err.c_str()); exit(1); } enum class VarType { FLOAT, VECTOR3F, }; struct json_search { const char *label; void *ptr; VarType t; }; json_search vars[] = { #define FRAME_VAR(s) { #s, &model.s, VarType::FLOAT } FRAME_VAR(mass), FRAME_VAR(diagonal_size), FRAME_VAR(refSpd), FRAME_VAR(refAngle), FRAME_VAR(refVoltage), FRAME_VAR(refCurrent), FRAME_VAR(refAlt), FRAME_VAR(refTempC), FRAME_VAR(maxVoltage), FRAME_VAR(battCapacityAh), FRAME_VAR(refBatRes), FRAME_VAR(propExpo), FRAME_VAR(refRotRate), FRAME_VAR(hoverThrOut), FRAME_VAR(pwmMin), FRAME_VAR(pwmMax), FRAME_VAR(spin_min), FRAME_VAR(spin_max), FRAME_VAR(slew_max), FRAME_VAR(disc_area), FRAME_VAR(mdrag_coef), {"moment_inertia", &model.moment_of_inertia, VarType::VECTOR3F}, FRAME_VAR(num_motors), }; for (uint8_t i=0; i()) { // use default value continue; } if (vars[i].t == VarType::FLOAT) { parse_float(v, vars[i].label, *((float *)vars[i].ptr)); } else if (vars[i].t == VarType::VECTOR3F) { parse_vector3(v, vars[i].label, *(Vector3f *)vars[i].ptr); } } json_search per_motor_vars[] = { {"position", &model.motor_pos, VarType::VECTOR3F}, {"vector", &model.motor_thrust_vec, VarType::VECTOR3F}, {"yaw", &model.yaw_factor, VarType::FLOAT}, }; char label_name[20]; for (uint8_t i=0; i()) { // use default value continue; } if (vars[i].t == VarType::FLOAT) { parse_float(v, label_name, *(((float *)per_motor_vars[i].ptr) + j)); } else if (per_motor_vars[i].t == VarType::VECTOR3F) { parse_vector3(v, label_name, *(((Vector3f *)per_motor_vars[i].ptr) + j)); } } } ::printf("Loaded model params from %s\n", model_json); } void Frame::parse_float(picojson::value val, const char* label, float ¶m) { if (!val.is()) { AP_HAL::panic("Bad json type for %s: %s", label, val.to_str().c_str()); } param = val.get(); } void Frame::parse_vector3(picojson::value val, const char* label, Vector3f ¶m) { if (!val.is() || !val.contains(2) || val.contains(3)) { AP_HAL::panic("Bad json type for %s: %s", label, val.to_str().c_str()); } for (uint8_t j=0; j<3; j++) { parse_float(val.get(j), label, param[j]); } } #endif /* initialise the frame */ #if AP_SIM_ENABLED void Frame::init(const char *frame_str, Battery *_battery) { model = default_model; battery = _battery; #if USE_PICOJSON const char *colon = strchr(frame_str, ':'); size_t slen = strlen(frame_str); if (colon != nullptr && slen > 5 && strcmp(&frame_str[slen-5], ".json") == 0) { load_frame_params(colon+1); } #endif mass = model.mass; const float drag_force = model.mass * GRAVITY_MSS * tanf(radians(model.refAngle)); const float cos_tilt = cosf(radians(model.refAngle)); const float airspeed_bf = model.refSpd * cos_tilt; const float ref_thrust = model.mass * GRAVITY_MSS / cos_tilt; float ref_air_density = get_air_density(model.refAlt); const float momentum_drag = cos_tilt * model.mdrag_coef * airspeed_bf * sqrtf(ref_thrust * ref_air_density * model.disc_area); if (momentum_drag > drag_force) { model.mdrag_coef *= drag_force / momentum_drag; areaCd = 0.0; ::printf("Suggested EK3_DRAG_BCOEF_* = 0, EK3_DRAG_MCOEF = %.3f\n", (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density)); } else { areaCd = (drag_force - momentum_drag) / (0.5f * ref_air_density * sq(model.refSpd)); ::printf("Suggested EK3_DRAG_BCOEF_* = %.3f, EK3_DRAG_MCOEF = %.3f\n", model.mass / areaCd, (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density)); } terminal_rotation_rate = model.refRotRate; float hover_thrust = mass * GRAVITY_MSS; float hover_power = model.refCurrent * model.refVoltage; float hover_velocity_out = 2 * hover_power / hover_thrust; float effective_disc_area = hover_thrust / (0.5 * ref_air_density * sq(hover_velocity_out)); float velocity_max = hover_velocity_out / sqrtf(model.hoverThrOut); float effective_prop_area = effective_disc_area / num_motors; float true_prop_area = model.disc_area / num_motors; // power_factor is ratio of power consumed per newton of thrust float power_factor = hover_power / hover_thrust; battery->setup(model.battCapacityAh, model.refBatRes, model.maxVoltage); if (uint8_t(model.num_motors) != num_motors) { ::printf("Warning model expected %u motors and got %u\n", uint8_t(model.num_motors), num_motors); } for (uint8_t i=0; i 0) { AP_Param::set_default_by_name("BATT_CAPACITY", model.battCapacityAh*1000); } } /* find a frame by name */ Frame *Frame::find_frame(const char *name) { for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) { // do partial name matching to allow for frame variants if (strncasecmp(name, supported_frames[i].name, strlen(supported_frames[i].name)) == 0) { return &supported_frames[i]; } } return nullptr; } // calculate rotational and linear accelerations void Frame::calculate_forces(const Aircraft &aircraft, const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel, float* rpm, bool use_drag) { Vector3f thrust; // newtons Vector3f torque; const float air_density = get_air_density(aircraft.get_location().alt*0.01); const Vector3f gyro = aircraft.get_gyro(); Vector3f vel_air_bf = aircraft.get_dcm().transposed() * aircraft.get_velocity_air_ef(); float current = 0; for (uint8_t i=0; iget_voltage(), use_drag); current += motors[i].get_current(); torque += mtorque; thrust += mthrust; // simulate motor rpm if (!is_zero(AP::sitl()->vibe_motor)) { rpm[motor_offset+i] = motors[i].get_command() * AP::sitl()->vibe_motor * 60.0f; } } // calculate total rotational acceleration rot_accel.x = torque.x / model.moment_of_inertia.x; rot_accel.y = torque.y / model.moment_of_inertia.y; rot_accel.z = torque.z / model.moment_of_inertia.z; if (terminal_rotation_rate > 0) { // rotational air resistance rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; } if (use_drag) { // use the model params to calculate drag Vector3f drag_bf; drag_bf.x = areaCd * 0.5f * air_density * sq(vel_air_bf.x); if (is_negative(vel_air_bf.x)) { drag_bf.x = -drag_bf.x; } drag_bf.y = areaCd * 0.5f * air_density * sq(vel_air_bf.y); if (is_negative(vel_air_bf.y)) { drag_bf.y = -drag_bf.y; } drag_bf.z = areaCd * 0.5f * air_density * sq(vel_air_bf.z); if (is_negative(vel_air_bf.z)) { drag_bf.z = -drag_bf.z; } thrust -= drag_bf; } body_accel = thrust/aircraft.gross_mass(); } // calculate current and voltage void Frame::current_and_voltage(float &voltage, float ¤t) { float param_voltage = AP::sitl()->batt_voltage; if (!is_equal(last_param_voltage,param_voltage)) { battery->init_voltage(param_voltage); last_param_voltage = param_voltage; } voltage = battery->get_voltage(); current = 0; for (uint8_t i=0; i