// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * RC_Channel.cpp - Radio library for Arduino * Code by Jason Short. DIYDrones.com * */ #include #include #include extern const AP_HAL::HAL& hal; #include #include "RC_Channel.h" /// global array with pointers to all APM RC channels, will be used by AP_Mount /// and AP_Camera classes / It points to RC input channels, both APM1 and APM2 /// only have 8 input channels. RC_Channel *RC_Channel::rc_ch[RC_MAX_CHANNELS]; const AP_Param::GroupInfo RC_Channel::var_info[] PROGMEM = { // @Param: MIN // @DisplayName: RC min PWM // @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MIN", 0, RC_Channel, radio_min, 1100), // @Param: TRIM // @DisplayName: RC trim PWM // @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TRIM", 1, RC_Channel, radio_trim, 1500), // @Param: MAX // @DisplayName: RC max PWM // @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MAX", 2, RC_Channel, radio_max, 1900), // @Param: REV // @DisplayName: RC reverse // @Description: Reverse servo operation. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel. // @Values: -1:Reversed,1:Normal // @User: Advanced AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1), // Note: index 4 was used by the previous _dead_zone value. We // changed it to 5 as dead zone values had previously been // incorrectly saved, overriding user values. They were also // incorrectly interpreted for the throttle on APM:Plane // @Param: DZ // @DisplayName: RC dead-zone // @Description: dead zone around trim. // @Units: pwm // @Range: 0 200 // @User: Advanced AP_GROUPINFO("DZ", 5, RC_Channel, _dead_zone, 0), AP_GROUPEND }; // setup the control preferences void RC_Channel::set_range(int16_t low, int16_t high) { _type = RC_CHANNEL_TYPE_RANGE; _high = high; _low = low; _high_out = high; _low_out = low; } void RC_Channel::set_range_out(int16_t low, int16_t high) { _high_out = high; _low_out = low; } void RC_Channel::set_angle(int16_t angle) { _type = RC_CHANNEL_TYPE_ANGLE; _high = angle; } void RC_Channel::set_default_dead_zone(int16_t dzone) { if (!_dead_zone.load()) { _dead_zone.set(abs(dzone)); } } void RC_Channel::set_reverse(bool reverse) { if (reverse) _reverse = -1; else _reverse = 1; } bool RC_Channel::get_reverse(void) const { if (_reverse == -1) { return true; } return false; } void RC_Channel::set_type(uint8_t t) { _type = t; } // call after first read void RC_Channel::trim() { radio_trim = radio_in; } // read input from APM_RC - create a control_in value void RC_Channel::set_pwm(int16_t pwm) { radio_in = pwm; if (_type == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range(); } else { //RC_CHANNEL_TYPE_ANGLE, RC_CHANNEL_TYPE_ANGLE_RAW control_in = pwm_to_angle(); } } /* call read() and set_pwm() on all channels */ void RC_Channel::set_pwm_all(void) { for (uint8_t i=0; iset_pwm(rc_ch[i]->read()); } } } // read input from APM_RC - create a control_in value, but use a // zero value for the dead zone. When done this way the control_in // value can be used as servo_out to give the same output as input void RC_Channel::set_pwm_no_deadzone(int16_t pwm) { radio_in = pwm; if (_type == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range_dz(0); } else { //RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW control_in = pwm_to_angle_dz(0); } } int16_t RC_Channel::control_mix(float value) { return (1 - abs(control_in / _high)) * value + control_in; } // are we below a threshold? bool RC_Channel::get_failsafe(void) { return (radio_in < (radio_min - 50)); } // returns just the PWM without the offset from radio_min void RC_Channel::calc_pwm(void) { if(_type == RC_CHANNEL_TYPE_RANGE) { pwm_out = range_to_pwm(); radio_out = (_reverse >= 0) ? (radio_min + pwm_out) : (radio_max - pwm_out); }else if(_type == RC_CHANNEL_TYPE_ANGLE_RAW) { pwm_out = (float)servo_out * 0.1f; radio_out = (pwm_out * _reverse) + radio_trim; }else{ // RC_CHANNEL_TYPE_ANGLE pwm_out = angle_to_pwm(); radio_out = pwm_out + radio_trim; } radio_out = constrain_int16(radio_out, radio_min.get(), radio_max.get()); } // ------------------------------------------ void RC_Channel::load_eeprom(void) { radio_min.load(); radio_trim.load(); radio_max.load(); _reverse.load(); _dead_zone.load(); } void RC_Channel::save_eeprom(void) { radio_min.save(); radio_trim.save(); radio_max.save(); _reverse.save(); _dead_zone.save(); } // ------------------------------------------ void RC_Channel::zero_min_max() { radio_min = radio_max = radio_in; } void RC_Channel::update_min_max() { radio_min = min(radio_min.get(), radio_in); radio_max = max(radio_max.get(), radio_in); } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz(uint16_t dead_zone) { int16_t radio_trim_high = radio_trim + dead_zone; int16_t radio_trim_low = radio_trim - dead_zone; // prevent div by 0 if ((radio_trim_low - radio_min) == 0 || (radio_max - radio_trim_high) == 0) return 0; if(radio_in > radio_trim_high) { return _reverse * ((long)_high * (long)(radio_in - radio_trim_high)) / (long)(radio_max - radio_trim_high); }else if(radio_in < radio_trim_low) { return _reverse * ((long)_high * (long)(radio_in - radio_trim_low)) / (long)(radio_trim_low - radio_min); }else return 0; } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value */ int16_t RC_Channel::pwm_to_angle() { return pwm_to_angle_dz(_dead_zone); } int16_t RC_Channel::angle_to_pwm() { if((servo_out * _reverse) > 0) return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high; else return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high; } /* convert a pulse width modulation value to a value in the configured range, using the specified deadzone */ int16_t RC_Channel::pwm_to_range_dz(uint16_t dead_zone) { int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get()); if (_reverse == -1) { r_in = radio_max.get() - (r_in - radio_min.get()); } int16_t radio_trim_low = radio_min + dead_zone; if (r_in > radio_trim_low) return (_low + ((long)(_high - _low) * (long)(r_in - radio_trim_low)) / (long)(radio_max - radio_trim_low)); else if (dead_zone > 0) return 0; else return _low; } /* convert a pulse width modulation value to a value in the configured range */ int16_t RC_Channel::pwm_to_range() { return pwm_to_range_dz(_dead_zone); } int16_t RC_Channel::range_to_pwm() { if (_high_out == _low_out) { return radio_trim; } return ((long)(servo_out - _low_out) * (long)(radio_max - radio_min)) / (long)(_high_out - _low_out); } // ------------------------------------------ float RC_Channel::norm_input() { float ret; if(radio_in < radio_trim) ret = _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); else ret = _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); return constrain_float(ret, -1.0f, 1.0f); } /* get percentage input from 0 to 100. This ignores the trim value. */ uint8_t RC_Channel::percent_input() { if (radio_in <= radio_min) { return _reverse==-1?100:0; } if (radio_in >= radio_max) { return _reverse==-1?0:100; } uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min); if (_reverse == -1) { ret = 100 - ret; } return ret; } float RC_Channel::norm_output() { int16_t mid = (radio_max + radio_min) / 2; float ret; if(radio_out < mid) ret = (float)(radio_out - mid) / (float)(mid - radio_min); else ret = (float)(radio_out - mid) / (float)(radio_max - mid); if (_reverse == -1) { ret = -ret; } return ret; } void RC_Channel::output() const { hal.rcout->write(_ch_out, radio_out); } void RC_Channel::output_trim() const { hal.rcout->write(_ch_out, radio_trim); } void RC_Channel::output_trim_all() { for (uint8_t i=0; ioutput_trim(); } } } /* setup the failsafe value to the trim value for all channels */ void RC_Channel::setup_failsafe_trim_all() { for (uint8_t i=0; iset_failsafe_pwm(1U<radio_trim); } } } void RC_Channel::input() { radio_in = hal.rcin->read(_ch_out); } uint16_t RC_Channel::read() const { return hal.rcin->read(_ch_out); } void RC_Channel::enable_out() { hal.rcout->enable_ch(_ch_out); } void RC_Channel::disable_out() { hal.rcout->disable_ch(_ch_out); } RC_Channel *RC_Channel::rc_channel(uint8_t i) { if (i >= RC_MAX_CHANNELS) { return NULL; } return rc_ch[i]; } // return a limit PWM value uint16_t RC_Channel::get_limit_pwm(LimitValue limit) const { switch (limit) { case RC_CHANNEL_LIMIT_TRIM: return radio_trim; case RC_CHANNEL_LIMIT_MAX: return get_reverse() ? radio_min : radio_max; case RC_CHANNEL_LIMIT_MIN: return get_reverse() ? radio_max : radio_min; } // invalid limit value, return trim return radio_trim; }