/* * Copyright (c) 2016 PX4 Development Team. All rights reserved. * Copyright (C) 2017 Intel Corporation. All rights reserved. * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ /* * Implementation of TAP UART ESCs. Used the implementation from PX4 as a base * which is BSD-licensed: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_PX4_AEROFC_V1 #include "RCOutput_Tap.h" #include #include #include #include #include #include #include #include #define DEBUG 0 #if DEBUG #define debug(fmt, args...) ::printf(fmt "\n", ##args) #else #define debug(fmt, args...) #endif #define UART_DEVICE_PATH "/dev/ttyS0" extern const AP_HAL::HAL &hal; /****** ESC data types ******/ #define ESC_HAVE_CURRENT_SENSOR #define MIN_BOOT_TIME_USEC (550 * AP_USEC_PER_MSEC) static const uint8_t crcTable[256] = { 0x00, 0xE7, 0x29, 0xCE, 0x52, 0xB5, 0x7B, 0x9C, 0xA4, 0x43, 0x8D, 0x6A, 0xF6, 0x11, 0xDF, 0x38, 0xAF, 0x48, 0x86, 0x61, 0xFD, 0x1A, 0xD4, 0x33, 0x0B, 0xEC, 0x22, 0xC5, 0x59, 0xBE, 0x70, 0x97, 0xB9, 0x5E, 0x90, 0x77, 0xEB, 0x0C, 0xC2, 0x25, 0x1D, 0xFA, 0x34, 0xD3, 0x4F, 0xA8, 0x66, 0x81, 0x16, 0xF1, 0x3F, 0xD8, 0x44, 0xA3, 0x6D, 0x8A, 0xB2, 0x55, 0x9B, 0x7C, 0xE0, 0x07, 0xC9, 0x2E, 0x95, 0x72, 0xBC, 0x5B, 0xC7, 0x20, 0xEE, 0x09, 0x31, 0xD6, 0x18, 0xFF, 0x63, 0x84, 0x4A, 0xAD, 0x3A, 0xDD, 0x13, 0xF4, 0x68, 0x8F, 0x41, 0xA6, 0x9E, 0x79, 0xB7, 0x50, 0xCC, 0x2B, 0xE5, 0x02, 0x2C, 0xCB, 0x05, 0xE2, 0x7E, 0x99, 0x57, 0xB0, 0x88, 0x6F, 0xA1, 0x46, 0xDA, 0x3D, 0xF3, 0x14, 0x83, 0x64, 0xAA, 0x4D, 0xD1, 0x36, 0xF8, 0x1F, 0x27, 0xC0, 0x0E, 0xE9, 0x75, 0x92, 0x5C, 0xBB, 0xCD, 0x2A, 0xE4, 0x03, 0x9F, 0x78, 0xB6, 0x51, 0x69, 0x8E, 0x40, 0xA7, 0x3B, 0xDC, 0x12, 0xF5, 0x62, 0x85, 0x4B, 0xAC, 0x30, 0xD7, 0x19, 0xFE, 0xC6, 0x21, 0xEF, 0x08, 0x94, 0x73, 0xBD, 0x5A, 0x74, 0x93, 0x5D, 0xBA, 0x26, 0xC1, 0x0F, 0xE8, 0xD0, 0x37, 0xF9, 0x1E, 0x82, 0x65, 0xAB, 0x4C, 0xDB, 0x3C, 0xF2, 0x15, 0x89, 0x6E, 0xA0, 0x47, 0x7F, 0x98, 0x56, 0xB1, 0x2D, 0xCA, 0x04, 0xE3, 0x58, 0xBF, 0x71, 0x96, 0x0A, 0xED, 0x23, 0xC4, 0xFC, 0x1B, 0xD5, 0x32, 0xAE, 0x49, 0x87, 0x60, 0xF7, 0x10, 0xDE, 0x39, 0xA5, 0x42, 0x8C, 0x6B, 0x53, 0xB4, 0x7A, 0x9D, 0x01, 0xE6, 0x28, 0xCF, 0xE1, 0x06, 0xC8, 0x2F, 0xB3, 0x54, 0x9A, 0x7D, 0x45, 0xA2, 0x6C, 0x8B, 0x17, 0xF0, 0x3E, 0xD9, 0x4E, 0xA9, 0x67, 0x80, 0x1C, 0xFB, 0x35, 0xD2, 0xEA, 0x0D, 0xC3, 0x24, 0xB8, 0x5F, 0x91, 0x76 }; // Circular from back right in CCW direction static const uint8_t device_mux_map[] = {0, 1, 4, 3, 2, 5, 7, 8}; // 0 is CW, 1 is CCW static const uint8_t device_dir_map[] = {0, 1, 0, 1, 0, 1, 0, 1}; #define TAP_ESC_MAX_PACKET_LEN 20 #define TAP_ESC_MAX_MOTOR_NUM 8 /* * ESC_POS maps the values stored in the channelMapTable to reorder the ESC's * id so that that match the mux setting, so that the ressonder's data * will be read. * The index on channelMapTable[p] p is the physical ESC * The value it is set to is the logical value from ESC_POS[p] * Phy Log * 0 0 * 1 1 * 2 4 * 3 3 * 4 2 * 5 5 * .... * */ #define RPMMAX 1900 #define RPMMIN 1200 #define RPMSTOPPED (RPMMIN - 10) #define MIN_BOOT_TIME_MSEC (550) // Minimum time to wait after Power on before sending commands namespace PX4 { /****** Run ***********/ #define RUN_CHANNEL_VALUE_MASK (uint16_t)0x07ff #define RUN_RED_LED_ON_MASK (uint16_t)0x0800 #define RUN_GREEN_LED_ON_MASK (uint16_t)0x1000 #define RUN_BLUE_LED_ON_MASK (uint16_t)0x2000 #define RUN_LED_ON_MASK (uint16_t)0x3800 #define RUN_FEEDBACK_ENABLE_MASK (uint16_t)0x4000 #define RUN_REVERSE_MASK (uint16_t)0x8000 struct PACKED RunReq { uint16_t value[TAP_ESC_MAX_MOTOR_NUM]; }; struct PACKED RunInfoRepsonse { uint8_t channelID; uint8_t ESCStatus; int16_t speed; // -32767 - 32768 #if defined(ESC_HAVE_VOLTAGE_SENSOR) uint16_t voltage; // 0.00 - 100.00 V #endif #if defined(ESC_HAVE_CURRENT_SENSOR) uint16_t current; // 0.0 - 200.0 A #endif #if defined(ESC_HAVE_TEMPERATURE_SENSOR) uint8_t temperature; // 0 - 256 degree celsius #endif }; /****** Run ***********/ /****** ConFigInfoBasic ***********/ struct PACKED ConfigInfoBasicRequest { uint8_t maxChannelInUse; uint8_t channelMapTable[TAP_ESC_MAX_MOTOR_NUM]; uint8_t monitorMsgType; uint8_t controlMode; uint16_t minChannelValue; uint16_t maxChannelValue; }; struct PACKED ConfigInfoBasicResponse { uint8_t channelID; ConfigInfoBasicRequest resp; }; #define ESC_CHANNEL_MAP_CHANNEL 0x0f #define ESC_CHANNEL_MAP_RUNNING_DIRECTION 0xf0 /****** ConFigInfoBasicResponse ***********/ /****** InfoRequest ***********/ enum InfoTypes { REQUEST_INFO_BASIC = 0, REQUEST_INFO_FUll, REQUEST_INFO_RUN, REQUEST_INFO_STUDY, REQUEST_INFO_COMM, REQUEST_INFO_DEVICE, }; struct PACKED InfoRequest { uint8_t channelID; uint8_t requestInfoType; }; /****** InfoRequest ***********/ struct PACKED EscPacket { uint8_t head; uint8_t len; uint8_t msg_id; union { InfoRequest reqInfo; ConfigInfoBasicRequest reqConfigInfoBasic; RunReq reqRun; ConfigInfoBasicResponse rspConfigInfoBasic; RunInfoRepsonse rspRunInfo; uint8_t bytes[100]; } d; uint8_t crc_data; }; //static const unsigned ESC_PACKET_DATA_OFFSET = offsetof(EscPacket, d); static const unsigned ESC_PACKET_DATA_OFFSET = 3; /****************************************************************************************** * ESCBUS_MSG_ID_RUN_INFO packet * * Monitor message of ESCs while motor is running * * channelID: assigned channel number * * ESCStatus: status of ESC * Num Health status * 0 HEALTHY * 1 WARNING_LOW_VOLTAGE * 2 WARNING_OVER_CURRENT * 3 WARNING_OVER_HEAT * 4 ERROR_MOTOR_LOW_SPEED_LOSE_STEP * 5 ERROR_MOTOR_STALL * 6 ERROR_HARDWARE * 7 ERROR_LOSE_PROPELLER * 8 ERROR_OVER_CURRENT * * speed: -32767 - 32767 rpm * * temperature: 0 - 256 celsius degree (if available) * voltage: 0.00 - 100.00 V (if available) * current: 0.0 - 200.0 A (if available) */ enum ESCBUS_ENUM_ESC_STATUS { ESC_STATUS_HEALTHY, ESC_STATUS_WARNING_LOW_VOLTAGE, ESC_STATUS_WARNING_OVER_HEAT, ESC_STATUS_ERROR_MOTOR_LOW_SPEED_LOSE_STEP, ESC_STATUS_ERROR_MOTOR_STALL, ESC_STATUS_ERROR_HARDWARE, ESC_STATUS_ERROR_LOSE_PROPELLER, ESC_STATUS_ERROR_OVER_CURRENT, ESC_STATUS_ERROR_MOTOR_HIGH_SPEED_LOSE_STEP, ESC_STATUS_ERROR_LOSE_CMD, }; enum ESCBUS_ENUM_MESSAGE_ID { // messages or command to ESC ESCBUS_MSG_ID_CONFIG_BASIC = 0, ESCBUS_MSG_ID_CONFIG_FULL, ESCBUS_MSG_ID_RUN, ESCBUS_MSG_ID_TUNE, ESCBUS_MSG_ID_DO_CMD, // messages from ESC ESCBUS_MSG_ID_REQUEST_INFO, ESCBUS_MSG_ID_CONFIG_INFO_BASIC, // simple configuration info for request from flight controller ESCBUS_MSG_ID_CONFIG_INFO_FULL, // full configuration info for request from host such as computer ESCBUS_MSG_ID_RUN_INFO, // feedback message in RUN mode ESCBUS_MSG_ID_STUDY_INFO, // studied parameters in STUDY mode ESCBUS_MSG_ID_COMM_INFO, // communication method info ESCBUS_MSG_ID_DEVICE_INFO, // ESC device info ESCBUS_MSG_ID_ASSIGNED_ID, // never touch ESCBUS_MSG_ID_MAX_NUM //boot loader used PROTO_OK = 0x10, // INSYNC/OK - 'ok' response PROTO_FAILED = 0x11, // INSYNC/FAILED - 'fail' response ESCBUS_MSG_ID_BOOT_SYNC = 0x21, // boot loader used PROTO_GET_DEVICE = 0x22, // get device ID bytes PROTO_CHIP_ERASE = 0x23, // erase program area and reset program address PROTO_PROG_MULTI = 0x27, // write bytes at program address and increment PROTO_GET_CRC = 0x29, // compute & return a CRC PROTO_BOOT = 0x30, // boot the application PROTO_GET_SOFTWARE_VERSION = 0x40, ESCBUS_MSG_ID_MAX_NUM, }; enum PARSR_ESC_STATE { HEAD, LEN, ID, DATA, CRC, }; /****************************/ } using namespace PX4; void RCOutput_Tap::_uart_close() { if (_uart_fd < 0) { return; } ::close(_uart_fd); _uart_fd = -1; } bool RCOutput_Tap::_uart_open() { // open uart _uart_fd = open(UART_DEVICE_PATH, O_RDWR | O_NOCTTY | O_NONBLOCK); int termios_state = -1; if (_uart_fd < 0) { PX4_ERR("failed to open uart device!"); return -1; } // set baud rate int speed = 250000; struct termios uart_config; tcgetattr(_uart_fd, &uart_config); // clear ONLCR flag (which appends a CR for every LF) uart_config.c_oflag &= ~ONLCR; // set baud rate if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) { ::fprintf(stderr, "failed to set baudrate for %s: %d\n", UART_DEVICE_PATH, termios_state); _uart_close(); return false; } if ((termios_state = tcsetattr(_uart_fd, TCSANOW, &uart_config)) < 0) { fprintf(stderr, "tcsetattr failed for %s\n", UART_DEVICE_PATH); _uart_close(); return false; } return true; } void RCOutput_Tap::init() { _perf_rcout = perf_alloc(PC_ELAPSED, "APM_rcout"); if (!_uart_open()) { AP_HAL::panic("Unable to open " UART_DEVICE_PATH); return; } hrt_abstime uptime_usec = hrt_absolute_time(); if (uptime_usec < MIN_BOOT_TIME_USEC) { hal.scheduler->delay((MIN_BOOT_TIME_USEC - uptime_usec) / AP_USEC_PER_MSEC); } /* Issue Basic Config */ EscPacket packet = {0xfe, sizeof(ConfigInfoBasicRequest), ESCBUS_MSG_ID_CONFIG_BASIC}; ConfigInfoBasicRequest &config = packet.d.reqConfigInfoBasic; memset(&config, 0, sizeof(ConfigInfoBasicRequest)); config.maxChannelInUse = _channels_count; config.controlMode = 1; /* Assign the id's to the ESCs to match the mux */ for (uint8_t phy_chan_index = 0; phy_chan_index < _channels_count; phy_chan_index++) { config.channelMapTable[phy_chan_index] = device_mux_map[phy_chan_index] & ESC_CHANNEL_MAP_CHANNEL; config.channelMapTable[phy_chan_index] |= (device_dir_map[phy_chan_index] << 4) & ESC_CHANNEL_MAP_RUNNING_DIRECTION; } config.maxChannelValue = RPMMAX; config.minChannelValue = RPMMIN; int ret = _send_packet(packet); if (ret < 0) { _uart_close(); AP_HAL::panic("Unable to send configuration to " UART_DEVICE_PATH); return; } /* * To Unlock the ESC from the Power up state we need to issue 10 * ESCBUS_MSG_ID_RUN request with all the values 0; */ EscPacket unlock_packet = {0xfe, _channels_count, ESCBUS_MSG_ID_RUN}; unlock_packet.len *= sizeof(unlock_packet.d.reqRun.value[0]); memset(unlock_packet.d.bytes, 0, sizeof(packet.d.bytes)); for (uint8_t i = 0; i < 10; i++) { _send_packet(unlock_packet); /* Min Packet to Packet time is 1 Ms so use 2 */ hal.scheduler->delay(2); } } int RCOutput_Tap::_send_packet(EscPacket &packet) { int packet_len = _crc_packet(packet); int ret = ::write(_uart_fd, &packet.head, packet_len); if (ret != packet_len) { debug("TX ERROR: ret: %d, errno: %d", ret, errno); } return ret; } uint8_t RCOutput_Tap::_crc8_esc(uint8_t *p, uint8_t len) { uint8_t crc = 0; for (uint8_t i = 0; i < len; i++) { crc = crcTable[crc ^ *p++]; } return crc; } uint8_t RCOutput_Tap::_crc_packet(EscPacket &p) { /* Calculate the crc over Len,ID,data */ p.d.bytes[p.len] = _crc8_esc(&p.len, p.len + 2); return p.len + ESC_PACKET_DATA_OFFSET + 1; } /* set output frequency */ void RCOutput_Tap::set_freq(uint32_t chmask, uint16_t freq_hz) { } uint16_t RCOutput_Tap::get_freq(uint8_t ch) { return 400; } void RCOutput_Tap::enable_ch(uint8_t ch) { if (ch >= MAX_MOTORS) { return; } _enabled_channels |= (1U << ch); } void RCOutput_Tap::disable_ch(uint8_t ch) { if (ch >= MAX_MOTORS) { return; } _enabled_channels &= ~(1U << ch); } void RCOutput_Tap::write(uint8_t ch, uint16_t period_us) { if (ch >= MAX_MOTORS) { return; } if (!(_enabled_channels & (1U << ch))) { // not enabled return; } _period[ch] = period_us; if (!_corking) { push(); } } uint16_t RCOutput_Tap::read(uint8_t ch) { if (ch >= MAX_MOTORS) { return 0; } return _period[ch]; } void RCOutput_Tap::read(uint16_t *period_us, uint8_t len) { for (uint8_t i = 0; i < len; i++) { period_us[i] = read(i); } } void RCOutput_Tap::cork() { _corking = true; } void RCOutput_Tap::push() { _corking = false; perf_begin(_perf_rcout); uint16_t out[TAP_ESC_MAX_MOTOR_NUM]; uint8_t motor_cnt = _channels_count; uint8_t motor_mapping[] = { [0] = 2, [1] = 1, [2] = 0, [3] = 3, }; // map from the RPM range to 0 - 100% duty cycle for the ESCs for (uint8_t i = 0; i < motor_cnt; i++) { uint16_t *val = &out[motor_mapping[i]]; if (!(_enabled_channels & (1U << i))) { *val = RPMSTOPPED; } else if (_period[i] < _esc_pwm_min) { *val = RPMSTOPPED; } else if (_period[i] >= _esc_pwm_max) { *val = RPMMAX; } else { float period_us = constrain_int16(_period[i], _esc_pwm_min, _esc_pwm_max); /* * Map to [ RPMSTOPPED, RPMMAX ] range rather than * [ RPMMIN, RPMMAX ] because AP_Motors will send us _esc_pwm_min * when it's disarmed */ float rpm = (period_us - _esc_pwm_min)/(_esc_pwm_max - _esc_pwm_min) * (RPMMAX - RPMSTOPPED) + RPMSTOPPED; *val = (uint16_t) rpm; } } for (uint8_t i = motor_cnt; i < TAP_ESC_MAX_MOTOR_NUM; i++) { out[i] = RPMSTOPPED; } /* * Value packet format, little endian * * | 15 | 14 | 13 | 12 | 11 | 10 | 11 | 12 | 11 | 10 ...... 0 | * -------------------------------------------------------------- * | -- | -- | -- | -- | REV | FEN | BL | GL | RL | RPM value | * * RPM value: [ RPMMIN, RPMMAX ] * RL: LED1 * GL: LED2 (ESC may have only one LED that works, independent of the color) * BL: LED3 * FEN: Feedback enable * REV: Reverse direction */ // TODO: enable feedback from 1 ESC and read data back #if 0 out[_next_channel_reply] |= RUN_FEEDBACK_ENABLE_MASK; #endif EscPacket packet = {0xfe, _channels_count, ESCBUS_MSG_ID_RUN}; packet.len *= sizeof(packet.d.reqRun.value[0]); for (uint8_t i = 0; i < _channels_count; i++) { packet.d.reqRun.value[i] = out[i] & RUN_CHANNEL_VALUE_MASK; } int ret = _send_packet(packet); if (ret < 1) { debug("TX ERROR: ret: %d, errno: %d", ret, errno); } _next_channel_reply = (_next_channel_reply + 1) % _channels_count; perf_end(_perf_rcout); } #endif