/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -- Coded by Victor Mayoral Vilches -- */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_InertialSensor_MPU9250.h" #include "../AP_HAL_Linux/GPIO.h" #include extern const AP_HAL::HAL& hal; // MPU6000 accelerometer scaling #define MPU9250_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f) #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 // MPU9250 registers #define MPUREG_XA_OFFS_H 0x77 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x78 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x7A // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x0B // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0D // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0E // Z axis accelerometer offset (low byte) // MPU6000 & MPU9250 registers // not sure if present in MPU9250 // #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 #define MPUREG_INT_PIN_CFG 0x37 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs # define BIT_LATCH_INT_EN 0x20 // latch data ready pin #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 // Configuration bits MPU 3000, MPU 6000 and MPU9250 #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 /* * PS-MPU-9250A-00.pdf, page 8, lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ #define GYRO_SCALE (0.0174532f / 16.4f) /* * PS-MPU-9250A-00.pdf, page 9, lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPUXk * variants however */ AP_InertialSensor_MPU9250::AP_InertialSensor_MPU9250() : AP_InertialSensor(), _drdy_pin(NULL), _initialised(false), _mpu9250_product_id(AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE), _last_filter_hz(-1), _accel_filter_x(1000, 15), _accel_filter_y(1000, 15), _accel_filter_z(1000, 15), _gyro_filter_x(1000, 15), _gyro_filter_y(1000, 15), _gyro_filter_z(1000, 15) { } /* initialise the sensor */ uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate ) { if (_initialised) return _mpu9250_product_id; _initialised = true; _spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250); _spi_sem = _spi->get_semaphore(); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLE _drdy_pin = hal.gpio->channel(BBB_P8_7); _drdy_pin->mode(HAL_GPIO_INPUT); #endif hal.scheduler->suspend_timer_procs(); uint8_t whoami = _register_read(MPUREG_WHOAMI); if (whoami != 0x71) { // TODO: we should probably accept multiple chip // revisions. This is the one on the PXF hal.console->printf("MPU9250: unexpected WHOAMI 0x%x\n", (unsigned)whoami); hal.scheduler->panic("MPU9250: bad WHOAMI"); } uint8_t tries = 0; do { bool success = _hardware_init(sample_rate); if (success) { hal.scheduler->delay(10); if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("MPU9250: Unable to get semaphore")); } if (_data_ready()) { _spi_sem->give(); break; } else { hal.console->println_P( PSTR("MPU9250 startup failed: no data ready")); } _spi_sem->give(); } if (tries++ > 5) { hal.scheduler->panic(PSTR("PANIC: failed to boot MPU9250 5 times")); } } while (1); hal.scheduler->resume_timer_procs(); /* read the first lot of data. * _read_data_transaction requires the spi semaphore to be taken by * its caller. */ hal.scheduler->delay(10); if (_spi_sem->take(100)) { _read_data_transaction(); _spi_sem->give(); } // start the timer process to read samples hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU9250::_poll_data)); #if MPU9250_DEBUG _dump_registers(); #endif return _mpu9250_product_id; } /* determine if a sample is available. We are using a time based strategy, to avoid time sync issues with the sensor */ bool AP_InertialSensor_MPU9250::_sample_available() { uint32_t tnow = hal.scheduler->micros(); while (tnow - _last_sample_usec > _sample_time_usec) { _have_sample_available = true; _last_sample_usec += _sample_time_usec; } return _have_sample_available; } /* wait for at least one sample to be available from the sensor */ bool AP_InertialSensor_MPU9250::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { uint32_t tnow = hal.scheduler->micros(); uint32_t tdelay = (_last_sample_usec + _sample_time_usec) - tnow; if (tdelay < 100000) { hal.scheduler->delay_microseconds(tdelay); } if (_sample_available()) { return true; } } return false; } /* update the accel and gyro vectors */ bool AP_InertialSensor_MPU9250::update( void ) { if (!wait_for_sample(1000)) { return false; } _previous_accel[0] = _accel[0]; // disable timer procs for mininum time hal.scheduler->suspend_timer_procs(); _gyro[0] = _gyro_filtered; _accel[0] = _accel_filtered; hal.scheduler->resume_timer_procs(); _gyro[0].rotate(_board_orientation); _gyro[0] *= GYRO_SCALE; _gyro[0] -= _gyro_offset[0]; _accel[0].rotate(_board_orientation); _accel[0] *= MPU9250_ACCEL_SCALE_1G; // rotate for bbone default _accel[0].rotate(ROTATION_ROLL_180_YAW_90); _gyro[0].rotate(ROTATION_ROLL_180_YAW_90); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF // PXF has an additional YAW 180 _accel[0].rotate(ROTATION_YAW_180); _gyro[0].rotate(ROTATION_YAW_180); #endif Vector3f accel_scale = _accel_scale[0].get(); _accel[0].x *= accel_scale.x; _accel[0].y *= accel_scale.y; _accel[0].z *= accel_scale.z; _accel[0] -= _accel_offset[0]; if (_last_filter_hz != _mpu6000_filter) { _set_filter(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } _have_sample_available = false; return true; } /*================ HARDWARE FUNCTIONS ==================== */ /** * Return true if the MPU9250 has new data available for reading. * * We use the data ready pin if it is available. Otherwise, read the * status register. */ bool AP_InertialSensor_MPU9250::_data_ready() { if (_drdy_pin) { return _drdy_pin->read() != 0; } uint8_t status = _register_read(MPUREG_INT_STATUS); return (status & BIT_RAW_RDY_INT) != 0; } /** * Timer process to poll for new data from the MPU9250. */ void AP_InertialSensor_MPU9250::_poll_data(void) { if (!_spi_sem->take_nonblocking()) { /* the semaphore being busy is an expected condition when the mainline code is calling wait_for_sample() which will grab the semaphore. We return now and rely on the mainline code grabbing the latest sample. */ return; } if (_data_ready()) { _read_data_transaction(); } _spi_sem->give(); } /* read from the data registers and update filtered data */ void AP_InertialSensor_MPU9250::_read_data_transaction() { /* one resister address followed by seven 2-byte registers */ struct PACKED { uint8_t cmd; uint8_t int_status; uint8_t v[14]; } rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, }; _spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx)); if (_drdy_pin) { if (_drdy_pin->read() != 0) { // data ready should have gone low after a read printf("MPU9250: DRDY didn't go low\n"); } } #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) _accel_filtered = Vector3f(_accel_filter_x.apply(int16_val(rx.v, 1)), _accel_filter_y.apply(int16_val(rx.v, 0)), _accel_filter_z.apply(-int16_val(rx.v, 2))); _gyro_filtered = Vector3f(_gyro_filter_x.apply(int16_val(rx.v, 5)), _gyro_filter_y.apply(int16_val(rx.v, 4)), _gyro_filter_z.apply(-int16_val(rx.v, 6))); } /* read an 8 bit register */ uint8_t AP_InertialSensor_MPU9250::_register_read( uint8_t reg ) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); return rx[1]; } /* write an 8 bit register */ void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } /* set the accel/gyro filter frequency */ void AP_InertialSensor_MPU9250::_set_filter(uint8_t filter_hz) { if (filter_hz == 0) { filter_hz = _default_filter_hz; } _accel_filter_x.set_cutoff_frequency(1000, filter_hz); _accel_filter_y.set_cutoff_frequency(1000, filter_hz); _accel_filter_z.set_cutoff_frequency(1000, filter_hz); _gyro_filter_x.set_cutoff_frequency(1000, filter_hz); _gyro_filter_y.set_cutoff_frequency(1000, filter_hz); _gyro_filter_z.set_cutoff_frequency(1000, filter_hz); } /* initialise the sensor configuration registers */ bool AP_InertialSensor_MPU9250::_hardware_init(Sample_rate sample_rate) { if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("MPU9250: Unable to get semaphore")); } // initially run the bus at low speed _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // Chip reset uint8_t tries; for (tries = 0; tries<5; tries++) { _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); // Wake up device and select GyroZ clock. Note that the // MPU6000 starts up in sleep mode, and it can take some time // for it to come out of sleep _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(5); // check it has woken up if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { break; } #if MPU9250_DEBUG _dump_registers(); #endif } if (tries == 5) { hal.console->println_P(PSTR("Failed to boot MPU9250 5 times")); _spi_sem->give(); return false; } _register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode // Disable I2C bus (recommended on datasheet) _register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); // sample rate and filtering // to minimise the effects of aliasing we choose a filter // that is less than half of the sample rate switch (sample_rate) { case RATE_50HZ: _default_filter_hz = 15; _sample_time_usec = 20000; break; case RATE_100HZ: _default_filter_hz = 30; _sample_time_usec = 10000; break; case RATE_200HZ: _default_filter_hz = 30; _sample_time_usec = 5000; break; case RATE_400HZ: default: _default_filter_hz = 30; _sample_time_usec = 2500; break; } // used a fixed filter of 42Hz on the sensor, then filter using // the 2-pole software filter _register_write(MPUREG_CONFIG, BITS_DLPF_CFG_42HZ); // set sample rate to 1kHz, and use the 2 pole filter to give the // desired rate _register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_1000HZ); _register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000ยบ/s // RM-MPU-9250A-00.pdf, pg. 15, select accel full scale 8g _register_write(MPUREG_ACCEL_CONFIG,2<<3); // configure interrupt to fire when new data arrives _register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); // clear interrupt on any read, and hold the data ready pin high // until we clear the interrupt _register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); // now that we have initialised, we set the SPI bus speed to high // (8MHz on APM2) _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _spi_sem->give(); return true; } // return the MPUXk gyro drift rate in radian/s/s // note that this is much better than the oilpan gyros float AP_InertialSensor_MPU9250::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } #if MPU9250_DEBUG // dump all config registers - used for debug void AP_InertialSensor_MPU9250::_dump_registers(void) { hal.console->println_P(PSTR("MPU9250 registers")); for (uint8_t reg=0; reg<=126; reg++) { uint8_t v = _register_read(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } #endif // get_delta_time returns the time period in seconds overwhich the // sensor data was collected. We just use a constant time, to decouple // the 9250 timing from the main scheduler float AP_InertialSensor_MPU9250::get_delta_time() const { return _sample_time_usec * 1.0e-6f; } #endif // CONFIG_HAL_BOARD