/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // DIYDrones Custom Mediatek GPS driver for ArduPilot and ArduPilotMega. // Code by Michael Smith, Jordi Munoz and Jose Julio, Craig Elder, DIYDrones.com // // GPS configuration : Custom protocol per "DIYDrones Custom Binary Sentence Specification V1.6, v1.7, v1.8, v1.9" // // Note that this driver supports both the 1.6 and 1.9 protocol varients // #include "AP_GPS_MTK.h" #include "AP_GPS_MTK19.h" extern const AP_HAL::HAL& hal; AP_GPS_MTK19::AP_GPS_MTK19(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port), _step(0), _payload_counter(0), _mtk_revision(0), _fix_counter(0) { AP_GPS_MTK::send_init_blob(_state.instance, _gps); } // Process bytes available from the stream // // The stream is assumed to contain only our custom message. If it // contains other messages, and those messages contain the preamble bytes, // it is possible for this code to become de-synchronised. Without // buffering the entire message and re-processing it from the top, // this is unavoidable. // // The lack of a standard header length field makes it impossible to skip // unrecognised messages. // bool AP_GPS_MTK19::read(void) { uint8_t data; int16_t numc; bool parsed = false; numc = port->available(); for (int16_t i = 0; i < numc; i++) { // Process bytes received // read the next byte data = port->read(); restart: switch(_step) { // Message preamble, class, ID detection // // If we fail to match any of the expected bytes, we // reset the state machine and re-consider the failed // byte as the first byte of the preamble. This // improves our chances of recovering from a mismatch // and makes it less likely that we will be fooled by // the preamble appearing as data in some other message. // case 0: if (data == PREAMBLE1_V16) { _mtk_revision = MTK_GPS_REVISION_V16; _step++; } else if (data == PREAMBLE1_V19) { _mtk_revision = MTK_GPS_REVISION_V19; _step++; } break; case 1: if (data == PREAMBLE2) { _step++; } else { _step = 0; goto restart; } break; case 2: if (sizeof(_buffer) == data) { _step++; _ck_b = _ck_a = data; // reset the checksum accumulators _payload_counter = 0; } else { _step = 0; // reset and wait for a message of the right class goto restart; } break; // Receive message data // case 3: _buffer[_payload_counter++] = data; _ck_b += (_ck_a += data); if (_payload_counter == sizeof(_buffer)) { _step++; } break; // Checksum and message processing // case 4: _step++; if (_ck_a != data) { _step = 0; goto restart; } break; case 5: _step = 0; if (_ck_b != data) { goto restart; } // parse fix if (_buffer.msg.fix_type == FIX_3D || _buffer.msg.fix_type == FIX_3D_SBAS) { state.status = AP_GPS::GPS_OK_FIX_3D; }else if (_buffer.msg.fix_type == FIX_2D || _buffer.msg.fix_type == FIX_2D_SBAS) { state.status = AP_GPS::GPS_OK_FIX_2D; }else{ state.status = AP_GPS::NO_FIX; } if (_mtk_revision == MTK_GPS_REVISION_V16) { state.location.lat = _buffer.msg.latitude * 10; // V16, V17,V18 doc says *10e7 but device says otherwise state.location.lng = _buffer.msg.longitude * 10; // V16, V17,V18 doc says *10e7 but device says otherwise } else { state.location.lat = _buffer.msg.latitude; state.location.lng = _buffer.msg.longitude; } state.location.alt = _buffer.msg.altitude; state.ground_speed = _buffer.msg.ground_speed*0.01f; state.ground_course = wrap_360(_buffer.msg.ground_course*0.01f); state.num_sats = _buffer.msg.satellites; state.hdop = _buffer.msg.hdop; if (state.status >= AP_GPS::GPS_OK_FIX_2D) { if (_fix_counter == 0) { uint32_t bcd_time_ms; bcd_time_ms = _buffer.msg.utc_time; #if 0 hal.console->printf("utc_date=%lu utc_time=%lu rev=%u\n", (unsigned long)_buffer.msg.utc_date, (unsigned long)_buffer.msg.utc_time, (unsigned)_mtk_revision); #endif make_gps_time(_buffer.msg.utc_date, bcd_time_ms); state.last_gps_time_ms = AP_HAL::millis(); } // the _fix_counter is to reduce the cost of the GPS // BCD time conversion by only doing it every 10s // between those times we use the HAL system clock as // an offset from the last fix _fix_counter++; if (_fix_counter == 50) { _fix_counter = 0; } } fill_3d_velocity(); parsed = true; } } return parsed; } /* detect a MTK16 or MTK19 GPS */ bool AP_GPS_MTK19::_detect(struct MTK19_detect_state &state, uint8_t data) { restart: switch (state.step) { case 0: state.ck_b = state.ck_a = state.payload_counter = 0; if (data == PREAMBLE1_V16 || data == PREAMBLE1_V19) { state.step++; } break; case 1: if (PREAMBLE2 == data) { state.step++; } else { state.step = 0; goto restart; } break; case 2: if (data == sizeof(struct diyd_mtk_msg)) { state.step++; state.ck_b = state.ck_a = data; } else { state.step = 0; goto restart; } break; case 3: state.ck_b += (state.ck_a += data); if (++state.payload_counter == sizeof(struct diyd_mtk_msg)) state.step++; break; case 4: state.step++; if (state.ck_a != data) { state.step = 0; goto restart; } break; case 5: state.step = 0; if (state.ck_b != data) { goto restart; } return true; } return false; }