void init_pids() { // create limits to how much dampening we'll allow // this creates symmetry with the P gain value preventing oscillations max_stabilize_dampener = pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15° max_yaw_dampener = pid_yaw.kP() * 6000; // = .5 * 6000 = 3000 } void control_nav_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter rc_1.servo_out = rc_1.control_mix(nav_roll); rc_2.servo_out = rc_2.control_mix(nav_pitch); } void fbw_nav_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter rc_1.servo_out = nav_roll; rc_2.servo_out = nav_pitch; } void output_stabilize_roll() { float error, rate; int dampener; error = rc_1.servo_out - dcm.roll_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel rc_1.servo_out = pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading // Limit dampening to be equal to propotional term for symmetry rate = degrees(omega.x) * 100.0; // 6rad = 34377 dampener = (rate * stabilize_dampener); // 34377 * .175 = 6000 rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP } void output_stabilize_pitch() { float error, rate; int dampener; error = rc_2.servo_out - dcm.pitch_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel rc_2.servo_out = pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading // Limit dampening to be equal to propotional term for symmetry rate = degrees(omega.y) * 100.0; // 6rad = 34377 dampener = (rate * stabilize_dampener); // 34377 * .175 = 6000 rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP } void clear_yaw_control() { //Serial.print("Clear "); rate_yaw_flag = false; // exit rate_yaw_flag nav_yaw = dcm.yaw_sensor; // save our Yaw yaw_error = 0; } void output_yaw_with_hold(boolean hold) { if(hold){ // look to see if we have exited rate control properly - ie stopped turning if(rate_yaw_flag){ // we are still in motion from rate control if(fabs(omega.y) < .15){ clear_yaw_control(); hold = true; // just to be explicit }else{ // return to rate control until we slow down. hold = false; } } }else{ // rate control // this indicates we are under rate control, when we enter Yaw Hold and // return to 0° per second, we exit rate control and hold the current Yaw rate_yaw_flag = true; yaw_error = 0; } if(hold){ // try and hold the current nav_yaw setting yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60° yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees // Apply PID and save the new angle back to RC_Channel rc_4.servo_out = pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000 // We adjust the output by the rate of rotation long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377 int dampener = ((float)rate * hold_yaw_dampener); // 18000 * .17 = 3000 // Limit dampening to be equal to propotional term for symmetry rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000 }else{ // rate control long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000 // -error = CCW, +error = CW rc_4.servo_out = pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 rc_4.servo_out = constrain(rc_4.servo_out, -2400, 2400); // limit to 2400 } } void output_rate_roll() { // rate control long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000 rc_1.servo_out = pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 rc_1.servo_out = constrain(rc_1.servo_out, -2400, 2400); // limit to 2400 } void output_rate_pitch() { // rate control long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000 rc_2.servo_out = pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 rc_2.servo_out = constrain(rc_2.servo_out, -2400, 2400); // limit to 2400 } /* rc_1.servo_out = rc_2.control_in; rc_2.servo_out = rc_2.control_in; // Rate control through bias corrected gyro rates // omega is the raw gyro reading plus Omega_I, so it´s bias corrected rc_1.servo_out -= (omega.x * 5729.57795 * acro_dampener); rc_2.servo_out -= (omega.y * 5729.57795 * acro_dampener); //Serial.printf("\trated out %d, omega ", rc_1.servo_out); //Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3); // Limit output rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); */ //} // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations void reset_I(void) { pid_nav_lat.reset_I(); pid_nav_lon.reset_I(); pid_baro_throttle.reset_I(); pid_sonar_throttle.reset_I(); }