/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Proximity_AirSimSITL.h" #if HAL_PROXIMITY_ENABLED #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include <AP_HAL/AP_HAL.h> #include <stdio.h> extern const AP_HAL::HAL& hal; #define PROXIMITY_MAX_RANGE 100.0f #define PROXIMITY_ACCURACY 0.1f // minimum distance (in meters) between objects sent to object database // update the state of the sensor void AP_Proximity_AirSimSITL::update(void) { SITL::vector3f_array &points = sitl->state.scanner.points; if (points.length == 0) { set_status(AP_Proximity::Status::NoData); return; } set_status(AP_Proximity::Status::Good); // reset all faces to default so that it can be filled with the fresh lidar data boundary.reset(); // precalculate sq of min distance const float distance_min_sq = sq(distance_min()); // variables used to reduce data sent to object database const float accuracy_sq = sq(PROXIMITY_ACCURACY); bool prev_pos_valid = false; Vector2f prev_pos; // clear temp boundary since we have a new message temp_boundary.reset(); for (uint16_t i=0; i<points.length; i++) { Vector3f &point = points.data[i]; if (point.is_zero()) { continue; } // calculate distance to point and check larger than min distance const Vector2f new_pos = Vector2f{point.x, point.y}; const float distance_sq = new_pos.length_squared(); if (distance_sq > distance_min_sq) { // add distance to the 3D boundary const float yaw_angle_deg = wrap_360(degrees(atan2f(point.y, point.x))); const AP_Proximity_Boundary_3D::Face face = boundary.get_face(yaw_angle_deg); // store the min distance in each face in a temp boundary temp_boundary.add_distance(face, yaw_angle_deg, safe_sqrt(distance_sq)); // check distance from previous point to reduce amount of data sent to object database if (!prev_pos_valid || ((new_pos - prev_pos).length_squared() >= accuracy_sq)) { // update OA database database_push(yaw_angle_deg, safe_sqrt(distance_sq)); // store point prev_pos_valid = true; prev_pos = new_pos; } } } // copy temp boundary to real boundary temp_boundary.update_3D_boundary(boundary); } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_AirSimSITL::distance_max() const { return PROXIMITY_MAX_RANGE; } float AP_Proximity_AirSimSITL::distance_min() const { return 0.0f; } // get distance upwards in meters. returns true on success bool AP_Proximity_AirSimSITL::get_upward_distance(float &distance) const { // we don't have an upward facing laser return false; } #endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL #endif // HAL_PROXIMITY_ENABLED