/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* implementation of MSP and BLHeli-4way protocols for pass-through ESC calibration and firmware update With thanks to betaflight for a great reference implementation */ #include "AP_BLHeli.h" #include #include #include #include extern const AP_HAL::HAL& hal; #if 0 #define debug(fmt, args ...) do { printf("ESC: " fmt "\n", ## args); } while (0) #else #define debug(fmt, args ...) #endif const AP_Param::GroupInfo AP_BLHeli::var_info[] = { // @Param: MASK // @DisplayName: Channel Bitmask // @Description: Enable of BLHeli pass-thru servo protocol support to specific channels. This mask is in addition to motors enabled using SERVO_BLH_AUTO (if any) // @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16 // @User: Advanced AP_GROUPINFO("MASK", 1, AP_BLHeli, channel_mask, 0), // @Param: AUTO // @DisplayName: auto-enable for multicopter motors // @Description: If set to 1 this auto-enables BLHeli pass-thru support for all multicopter motors // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("AUTO", 2, AP_BLHeli, channel_auto, 0), AP_GROUPEND }; // constructor AP_BLHeli::AP_BLHeli(void) { // set defaults from the parameter table AP_Param::setup_object_defaults(this, var_info); } /* process one byte of serial input for MSP protocol */ bool AP_BLHeli::msp_process_byte(uint8_t c) { if (msp.state == MSP_IDLE) { msp.escMode = PROTOCOL_NONE; if (c == '$') { msp.state = MSP_HEADER_START; } else { return false; } } else if (msp.state == MSP_HEADER_START) { msp.state = (c == 'M') ? MSP_HEADER_M : MSP_IDLE; } else if (msp.state == MSP_HEADER_M) { msp.state = MSP_IDLE; switch (c) { case '<': // COMMAND msp.packetType = MSP_PACKET_COMMAND; msp.state = MSP_HEADER_ARROW; break; case '>': // REPLY msp.packetType = MSP_PACKET_REPLY; msp.state = MSP_HEADER_ARROW; break; default: break; } } else if (msp.state == MSP_HEADER_ARROW) { if (c > sizeof(msp.buf)) { msp.state = MSP_IDLE; } else { msp.dataSize = c; msp.offset = 0; msp.checksum = 0; msp.checksum ^= c; msp.state = MSP_HEADER_SIZE; } } else if (msp.state == MSP_HEADER_SIZE) { msp.cmdMSP = c; msp.checksum ^= c; msp.state = MSP_HEADER_CMD; } else if (msp.state == MSP_HEADER_CMD && msp.offset < msp.dataSize) { msp.checksum ^= c; msp.buf[msp.offset++] = c; } else if (msp.state == MSP_HEADER_CMD && msp.offset >= msp.dataSize) { if (msp.checksum == c) { msp.state = MSP_COMMAND_RECEIVED; } else { msp.state = MSP_IDLE; } } return true; } /* update CRC state for blheli protocol */ void AP_BLHeli::blheli_crc_update(uint8_t c) { blheli.crc = crc_xmodem_update(blheli.crc, c); } /* process one byte of serial input for blheli 4way protocol */ bool AP_BLHeli::blheli_4way_process_byte(uint8_t c) { if (blheli.state == BLHELI_IDLE) { if (c == cmd_Local_Escape) { blheli.state = BLHELI_HEADER_START; blheli.crc = 0; blheli_crc_update(c); } else { return false; } } else if (blheli.state == BLHELI_HEADER_START) { blheli.command = c; blheli_crc_update(c); blheli.state = BLHELI_HEADER_CMD; } else if (blheli.state == BLHELI_HEADER_CMD) { blheli.address = c<<8; blheli.state = BLHELI_HEADER_ADDR_HIGH; blheli_crc_update(c); } else if (blheli.state == BLHELI_HEADER_ADDR_HIGH) { blheli.address |= c; blheli.state = BLHELI_HEADER_ADDR_LOW; blheli_crc_update(c); } else if (blheli.state == BLHELI_HEADER_ADDR_LOW) { blheli.state = BLHELI_HEADER_LEN; blheli.param_len = c?c:256; blheli.offset = 0; blheli_crc_update(c); } else if (blheli.state == BLHELI_HEADER_LEN) { blheli.buf[blheli.offset++] = c; blheli_crc_update(c); if (blheli.offset == blheli.param_len) { blheli.state = BLHELI_CRC1; } } else if (blheli.state == BLHELI_CRC1) { blheli.crc1 = c; blheli.state = BLHELI_CRC2; } else if (blheli.state == BLHELI_CRC2) { uint16_t crc = blheli.crc1<<8 | c; if (crc == blheli.crc) { blheli.state = BLHELI_COMMAND_RECEIVED; } else { blheli.state = BLHELI_IDLE; } } return true; } /* send a MSP protocol reply */ void AP_BLHeli::msp_send_reply(uint8_t cmd, const uint8_t *buf, uint8_t len) { uint8_t *b = &msp.buf[0]; *b++ = '$'; *b++ = 'M'; *b++ = '>'; *b++ = len; *b++ = cmd; memcpy(b, buf, len); b += len; uint8_t c = 0; for (uint8_t i=0; iwrite(&msp.buf[0], len+6); } void AP_BLHeli::putU16(uint8_t *b, uint16_t v) { b[0] = v; b[1] = v >> 8; } uint16_t AP_BLHeli::getU16(const uint8_t *b) { return b[0] | (b[1]<<8); } void AP_BLHeli::putU32(uint8_t *b, uint32_t v) { b[0] = v; b[1] = v >> 8; b[2] = v >> 16; b[3] = v >> 24; } void AP_BLHeli::putU16_BE(uint8_t *b, uint16_t v) { b[0] = v >> 8; b[1] = v; } /* process a MSP command from GCS */ void AP_BLHeli::msp_process_command(void) { debug("MSP cmd %u len=%u", msp.cmdMSP, msp.dataSize); switch (msp.cmdMSP) { case MSP_API_VERSION: { uint8_t buf[3] = { MSP_PROTOCOL_VERSION, API_VERSION_MAJOR, API_VERSION_MINOR }; msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_FC_VARIANT: msp_send_reply(msp.cmdMSP, (const uint8_t *)ARDUPILOT_IDENTIFIER, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH); break; case MSP_FC_VERSION: { uint8_t version[3] = { 3, 3, 0 }; msp_send_reply(msp.cmdMSP, version, sizeof(version)); break; } case MSP_BOARD_INFO: { // send a generic 'ArduPilot ChibiOS' board type uint8_t buf[7] = { 'A', 'R', 'C', 'H', 0, 0, 0 }; msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_BUILD_INFO: { // build date, build time, git version uint8_t buf[26] { 0x4d, 0x61, 0x72, 0x20, 0x31, 0x36, 0x20, 0x32, 0x30, 0x31, 0x38, 0x30, 0x38, 0x3A, 0x34, 0x32, 0x3a, 0x32, 0x39, 0x62, 0x30, 0x66, 0x66, 0x39, 0x32, 0x38}; msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_REBOOT: debug("MSP: rebooting"); hal.scheduler->reboot(false); break; case MSP_UID: // MCU identifer msp_send_reply(msp.cmdMSP, (const uint8_t *)UDID_START, 12); break; case MSP_ADVANCED_CONFIG: { uint8_t buf[10]; buf[0] = 1; // gyro sync denom buf[1] = 4; // pid process denom buf[2] = 0; // use unsynced pwm buf[3] = (uint8_t)PWM_TYPE_DSHOT150; // motor PWM protocol putU16(&buf[4], 480); // motor PWM Rate putU16(&buf[6], 450); // idle offset value buf[8] = 0; // use 32kHz buf[9] = 0; // motor PWM inversion msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_FEATURE_CONFIG: { uint8_t buf[4]; putU32(buf, 0); // from MSPFeatures enum msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_STATUS: { uint8_t buf[21]; putU16(&buf[0], 2500); // loop time usec putU16(&buf[2], 0); // i2c error count putU16(&buf[4], 0x27); // available sensors putU32(&buf[6], 0); // flight modes buf[10] = 0; // pid profile index putU16(&buf[11], 5); // system load percent putU16(&buf[13], 0); // gyro cycle time buf[15] = 0; // flight mode flags length buf[16] = 18; // arming disable flags count putU32(&buf[17], 0); // arming disable flags msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_MOTOR_3D_CONFIG: { uint8_t buf[6]; putU16(&buf[0], 1406); // 3D deadband low putU16(&buf[2], 1514); // 3D deadband high putU16(&buf[4], 1460); // 3D neutral msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_MOTOR_CONFIG: { uint8_t buf[6]; putU16(&buf[0], 1070); // min throttle putU16(&buf[2], 2000); // max throttle putU16(&buf[4], 1000); // min command msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_MOTOR: { // get the output going to each motor uint8_t buf[16]; for (uint8_t i = 0; i < 8; i++) { putU16(&buf[2*i], hal.rcout->read(i)); } msp_send_reply(msp.cmdMSP, buf, sizeof(buf)); break; } case MSP_SET_MOTOR: { // set the output to each motor uint8_t nmotors = msp.dataSize / 2; debug("MSP_SET_MOTOR %u", nmotors); hal.rcout->cork(); for (uint8_t i = 0; i < nmotors; i++) { if (i >= num_motors) { break; } uint16_t v = getU16(&msp.buf[i*2]); debug("MSP_SET_MOTOR %u %u", i, v); hal.rcout->write(motor_map[i], v); } hal.rcout->push(); break; } case MSP_SET_4WAY_IF: { if (msp.dataSize == 0) { msp.escMode = PROTOCOL_4WAY; } else if (msp.dataSize == 2) { msp.escMode = (enum escProtocol)msp.buf[0]; msp.portIndex = msp.buf[1]; } debug("escMode=%u portIndex=%u", msp.escMode, msp.portIndex); uint8_t n = num_motors; switch (msp.escMode) { case PROTOCOL_4WAY: break; default: n = 0; hal.rcout->serial_end(); serial_started = false; break; } msp_send_reply(msp.cmdMSP, &n, 1); break; } default: debug("Unknown MSP command %u", msp.cmdMSP); break; } } /* send a blheli 4way protocol reply */ void AP_BLHeli::blheli_send_reply(const uint8_t *buf, uint16_t len) { uint8_t *b = &blheli.buf[0]; *b++ = cmd_Remote_Escape; *b++ = blheli.command; putU16_BE(b, blheli.address); b += 2; *b++ = len==256?0:len; memcpy(b, buf, len); b += len; *b++ = blheli.ack; putU16_BE(b, crc_xmodem(&blheli.buf[0], len+6)); uart->write(&blheli.buf[0], len+8); debug("OutB(%u) 0x%02x ack=0x%02x", len+8, (unsigned)blheli.command, blheli.ack); } /* CRC used when talking to ESCs */ uint16_t AP_BLHeli::BL_CRC(const uint8_t *buf, uint16_t len) { uint16_t crc = 0; while (len--) { uint8_t xb = *buf++; for (uint8_t i = 0; i < 8; i++) { if (((xb & 0x01) ^ (crc & 0x0001)) !=0 ) { crc = crc >> 1; crc = crc ^ 0xA001; } else { crc = crc >> 1; } xb = xb >> 1; } } return crc; } bool AP_BLHeli::isMcuConnected(void) { return blheli.deviceInfo[0] > 0; } void AP_BLHeli::setDisconnected(void) { blheli.deviceInfo[0] = 0; blheli.deviceInfo[1] = 0; } /* send a set of bytes to an RC output channel */ bool AP_BLHeli::BL_SendBuf(const uint8_t *buf, uint16_t len) { bool send_crc = isMcuConnected(); if (blheli.chan >= num_motors) { return false; } hal.scheduler->delay(10); if (!hal.rcout->serial_setup_output(motor_map[blheli.chan], 19200)) { blheli.ack = ACK_D_GENERAL_ERROR; return false; } serial_started = true; memcpy(blheli.buf, buf, len); uint16_t crc = BL_CRC(buf, len); blheli.buf[len] = crc; blheli.buf[len+1] = crc>>8; if (!hal.rcout->serial_write_bytes(blheli.buf, len+(send_crc?2:0))) { blheli.ack = ACK_D_GENERAL_ERROR; return false; } return true; } /* read bytes from the ESC connection */ bool AP_BLHeli::BL_ReadBuf(uint8_t *buf, uint16_t len) { bool check_crc = isMcuConnected() && len > 0; uint16_t req_bytes = len+(check_crc?3:1); uint16_t n = hal.rcout->serial_read_bytes(blheli.buf, req_bytes); debug("BL_ReadBuf %u -> %u", len, n); if (req_bytes != n) { debug("short read"); blheli.ack = ACK_D_GENERAL_ERROR; return false; } if (check_crc) { uint16_t crc = BL_CRC(blheli.buf, len); if ((crc & 0xff) != blheli.buf[len] || (crc >> 8) != blheli.buf[len+1]) { debug("bad CRC"); blheli.ack = ACK_D_GENERAL_ERROR; return false; } if (blheli.buf[len+2] != brSUCCESS) { debug("bad ACK 0x%02x", blheli.buf[len+2]); blheli.ack = ACK_D_GENERAL_ERROR; return false; } } else { if (blheli.buf[len] != brSUCCESS) { debug("bad ACK1 0x%02x", blheli.buf[len]); blheli.ack = ACK_D_GENERAL_ERROR; return false; } } if (len > 0) { memcpy(buf, blheli.buf, len); } return true; } uint8_t AP_BLHeli::BL_GetACK(uint16_t timeout_ms) { uint8_t ack; uint32_t start_ms = AP_HAL::millis(); while (AP_HAL::millis() - start_ms < timeout_ms) { if (hal.rcout->serial_read_bytes(&ack, 1) == 1) { return ack; } } // return brNONE, meaning no ACK received in the timeout return brNONE; } bool AP_BLHeli::BL_SendCMDSetAddress() { // skip if adr == 0xFFFF if (blheli.address == 0xFFFF) { return true; } debug("BL_SendCMDSetAddress 0x%04x", blheli.address); uint8_t sCMD[] = {CMD_SET_ADDRESS, 0, uint8_t(blheli.address>>8), uint8_t(blheli.address)}; if (!BL_SendBuf(sCMD, 4)) { return false; } return BL_GetACK() == brSUCCESS; } bool AP_BLHeli::BL_ReadA(uint8_t cmd, uint8_t *buf, uint16_t n) { if (BL_SendCMDSetAddress()) { uint8_t sCMD[] = {cmd, uint8_t(n==256?0:n)}; if (!BL_SendBuf(sCMD, 2)) { return false; } return BL_ReadBuf(buf, n); } return false; } /* connect to a blheli ESC */ bool AP_BLHeli::BL_ConnectEx(void) { debug("BL_ConnectEx start"); setDisconnected(); const uint8_t BootInit[] = {0,0,0,0,0,0,0,0,0,0,0,0,0x0D,'B','L','H','e','l','i',0xF4,0x7D}; if (!BL_SendBuf(BootInit, 21)) { return false; } uint8_t BootInfo[8]; if (!BL_ReadBuf(BootInfo, 8)) { return false; } // reply must start with 471 if (strncmp((const char *)BootInfo, "471", 3) != 0) { blheli.ack = ACK_D_GENERAL_ERROR; return false; } // extract device information blheli.deviceInfo[2] = BootInfo[3]; blheli.deviceInfo[1] = BootInfo[4]; blheli.deviceInfo[0] = BootInfo[5]; blheli.interface_mode = 0; uint16_t *devword = (uint16_t *)blheli.deviceInfo; switch (*devword) { case 0x9307: case 0x930A: case 0x930F: case 0x940B: blheli.interface_mode = imATM_BLB; debug("Interface type imATM_BLB"); break; case 0xF310: case 0xF330: case 0xF410: case 0xF390: case 0xF850: case 0xE8B1: case 0xE8B2: blheli.interface_mode = imSIL_BLB; debug("Interface type imSIL_BLB"); break; case 0x1F06: case 0x3306: case 0x3406: case 0x3506: blheli.interface_mode = imARM_BLB; debug("Interface type imARM_BLB"); break; default: blheli.ack = ACK_D_GENERAL_ERROR; debug("Unknown interface type 0x%04x", *devword); break; } blheli.deviceInfo[3] = blheli.interface_mode; return true; } bool AP_BLHeli::BL_SendCMDKeepAlive(void) { uint8_t sCMD[] = {CMD_KEEP_ALIVE, 0}; if (!BL_SendBuf(sCMD, 2)) { return false; } if (BL_GetACK() != brERRORCOMMAND) { return false; } return true; } bool AP_BLHeli::BL_PageErase(void) { if (BL_SendCMDSetAddress()) { uint8_t sCMD[] = {CMD_ERASE_FLASH, 0x01}; if (!BL_SendBuf(sCMD, 2)) { return false; } return BL_GetACK(1000) == brSUCCESS; } return false; } void AP_BLHeli::BL_SendCMDRunRestartBootloader(void) { uint8_t sCMD[] = {RestartBootloader, 0}; blheli.deviceInfo[0] = 1; BL_SendBuf(sCMD, 2); } uint8_t AP_BLHeli::BL_SendCMDSetBuffer(const uint8_t *buf, uint16_t nbytes) { uint8_t sCMD[] = {CMD_SET_BUFFER, 0, uint8_t(nbytes>>8), uint8_t(nbytes&0xff)}; if (!BL_SendBuf(sCMD, 4)) { return false; } uint8_t ack; if ((ack = BL_GetACK()) != brNONE) { debug("BL_SendCMDSetBuffer ack failed 0x%02x", ack); blheli.ack = ACK_D_GENERAL_ERROR; return false; } if (!BL_SendBuf(buf, nbytes)) { debug("BL_SendCMDSetBuffer send failed"); blheli.ack = ACK_D_GENERAL_ERROR; return false; } return (BL_GetACK(40) == brSUCCESS); } bool AP_BLHeli::BL_WriteA(uint8_t cmd, const uint8_t *buf, uint16_t nbytes, uint32_t timeout_ms) { if (BL_SendCMDSetAddress()) { if (!BL_SendCMDSetBuffer(buf, nbytes)) { blheli.ack = ACK_D_GENERAL_ERROR; return false; } uint8_t sCMD[] = {cmd, 0x01}; if (!BL_SendBuf(sCMD, 2)) { return false; } return (BL_GetACK(timeout_ms) == brSUCCESS); } blheli.ack = ACK_D_GENERAL_ERROR; return false; } uint8_t AP_BLHeli::BL_WriteFlash(const uint8_t *buf, uint16_t n) { return BL_WriteA(CMD_PROG_FLASH, buf, n, 250); } bool AP_BLHeli::BL_VerifyFlash(const uint8_t *buf, uint16_t n) { if (BL_SendCMDSetAddress()) { if (!BL_SendCMDSetBuffer(buf, n)) { return false; } uint8_t sCMD[] = {CMD_VERIFY_FLASH_ARM, 0x01}; if (!BL_SendBuf(sCMD, 2)) { return false; } uint8_t ack = BL_GetACK(40); switch (ack) { case brSUCCESS: blheli.ack = ACK_OK; break; case brERRORVERIFY: blheli.ack = ACK_I_VERIFY_ERROR; break; default: blheli.ack = ACK_D_GENERAL_ERROR; break; } return true; } return false; } /* process a blheli 4way command from GCS */ void AP_BLHeli::blheli_process_command(void) { debug("BLHeli cmd 0x%02x len=%u", blheli.command, blheli.param_len); blheli.ack = ACK_OK; switch (blheli.command) { case cmd_InterfaceTestAlive: { debug("cmd_InterfaceTestAlive"); BL_SendCMDKeepAlive(); if (blheli.ack != ACK_OK) { setDisconnected(); } uint8_t b = 0; blheli_send_reply(&b, 1); break; } case cmd_ProtocolGetVersion: { debug("cmd_ProtocolGetVersion"); uint8_t buf[1]; buf[0] = SERIAL_4WAY_PROTOCOL_VER; blheli_send_reply(buf, sizeof(buf)); break; } case cmd_InterfaceGetName: { debug("cmd_InterfaceGetName"); uint8_t buf[5] = { 4, 'A', 'R', 'D', 'U' }; blheli_send_reply(buf, sizeof(buf)); break; } case cmd_InterfaceGetVersion: { debug("cmd_InterfaceGetVersion"); uint8_t buf[2] = { SERIAL_4WAY_VERSION_HI, SERIAL_4WAY_VERSION_LO }; blheli_send_reply(buf, sizeof(buf)); break; } case cmd_InterfaceExit: { debug("cmd_InterfaceExit"); msp.escMode = PROTOCOL_NONE; uint8_t b = 0; blheli_send_reply(&b, 1); hal.rcout->serial_end(); serial_started = false; break; } case cmd_DeviceReset: { debug("cmd_DeviceReset(%u)", unsigned(blheli.buf[0])); blheli.chan = blheli.buf[0]; switch (blheli.interface_mode) { case imSIL_BLB: case imATM_BLB: case imARM_BLB: BL_SendCMDRunRestartBootloader(); break; case imSK: break; } blheli_send_reply(&blheli.chan, 1); setDisconnected(); break; } case cmd_DeviceInitFlash: { debug("cmd_DeviceInitFlash(%u)", unsigned(blheli.buf[0])); blheli.chan = blheli.buf[0]; for (uint8_t tries=0; tries<5; tries++) { blheli.ack = ACK_OK; setDisconnected(); if (BL_ConnectEx()) { break; } } uint8_t buf[4] = {blheli.deviceInfo[0], blheli.deviceInfo[1], blheli.deviceInfo[2], blheli.deviceInfo[3]}; // device ID blheli_send_reply(buf, sizeof(buf)); break; } case cmd_InterfaceSetMode: { debug("cmd_InterfaceSetMode(%u)", unsigned(blheli.buf[0])); blheli.interface_mode = blheli.buf[0]; blheli_send_reply(&blheli.interface_mode, 1); break; } case cmd_DeviceRead: { uint16_t nbytes = blheli.buf[0]?blheli.buf[0]:256; debug("cmd_DeviceRead(%u) n=%u", blheli.chan, nbytes); uint8_t buf[nbytes]; uint8_t cmd = blheli.interface_mode==imATM_BLB?CMD_READ_FLASH_ATM:CMD_READ_FLASH_SIL; if (!BL_ReadA(cmd, buf, nbytes)) { nbytes = 1; } blheli_send_reply(buf, nbytes); break; } case cmd_DevicePageErase: { uint8_t page = blheli.buf[0]; debug("cmd_DevicePageErase(%u) im=%u", page, blheli.interface_mode); switch (blheli.interface_mode) { case imSIL_BLB: case imARM_BLB: { if (blheli.interface_mode == imARM_BLB) { // Address =Page * 1024 blheli.address = page << 10; } else { // Address =Page * 512 blheli.address = page << 9; } debug("ARM PageErase 0x%04x", blheli.address); BL_PageErase(); blheli.address = 0; blheli_send_reply(&page, 1); break; } default: blheli.ack = ACK_I_INVALID_CMD; blheli_send_reply(&page, 1); break; } break; } case cmd_DeviceWrite: { uint16_t nbytes = blheli.param_len; debug("cmd_DeviceWrite n=%u im=%u", nbytes, blheli.interface_mode); uint8_t buf[nbytes]; memcpy(buf, blheli.buf, nbytes); switch (blheli.interface_mode) { case imSIL_BLB: case imATM_BLB: case imARM_BLB: { BL_WriteFlash(buf, nbytes); break; } case imSK: { debug("Unsupported flash mode imSK"); break; } } uint8_t b=0; blheli_send_reply(&b, 1); break; } case cmd_DeviceVerify: { uint16_t nbytes = blheli.param_len; debug("cmd_DeviceWrite n=%u im=%u", nbytes, blheli.interface_mode); switch (blheli.interface_mode) { case imARM_BLB: { uint8_t buf[nbytes]; memcpy(buf, blheli.buf, nbytes); BL_VerifyFlash(buf, nbytes); break; } default: blheli.ack = ACK_I_INVALID_CMD; break; } uint8_t b=0; blheli_send_reply(&b, 1); break; } case cmd_DeviceReadEEprom: { uint16_t nbytes = blheli.buf[0]?blheli.buf[0]:256; uint8_t buf[nbytes]; debug("cmd_DeviceReadEEprom n=%u im=%u", nbytes, blheli.interface_mode); switch (blheli.interface_mode) { case imATM_BLB: { if (!BL_ReadA(CMD_READ_EEPROM, buf, nbytes)) { blheli.ack = ACK_D_GENERAL_ERROR; } break; } default: blheli.ack = ACK_I_INVALID_CMD; break; } if (blheli.ack != ACK_OK) { nbytes = 1; buf[0] = 0; } blheli_send_reply(buf, nbytes); break; } case cmd_DeviceWriteEEprom: { uint16_t nbytes = blheli.param_len; uint8_t buf[nbytes]; memcpy(buf, blheli.buf, nbytes); debug("cmd_DeviceWriteEEprom n=%u im=%u", nbytes, blheli.interface_mode); switch (blheli.interface_mode) { case imATM_BLB: BL_WriteA(CMD_PROG_EEPROM, buf, nbytes, 1000); break; default: blheli.ack = ACK_D_GENERAL_ERROR; break; } uint8_t b = 0; blheli_send_reply(&b, 1); break; } case cmd_DeviceEraseAll: case cmd_DeviceC2CK_LOW: default: // ack=unknown command blheli.ack = ACK_I_INVALID_CMD; debug("Unknown BLHeli protocol 0x%02x", blheli.command); uint8_t b = 0; blheli_send_reply(&b, 1); break; } } /* process an input byte, return true if we have received a whole packet with correct CRC */ bool AP_BLHeli::process_input(uint8_t b) { bool valid_packet = false; if (msp.escMode == PROTOCOL_4WAY && blheli.state == BLHELI_IDLE && b == '$') { debug("Change to MSP mode"); msp.escMode = PROTOCOL_NONE; hal.rcout->serial_end(); serial_started = false; } if (msp.escMode != PROTOCOL_4WAY && msp.state == MSP_IDLE && b == '/') { debug("Change to BLHeli mode"); msp.escMode = PROTOCOL_4WAY; } if (msp.escMode == PROTOCOL_4WAY) { blheli_4way_process_byte(b); } else { msp_process_byte(b); } if (msp.escMode == PROTOCOL_4WAY) { if (blheli.state == BLHELI_COMMAND_RECEIVED) { valid_packet = true; last_valid_ms = AP_HAL::millis(); blheli_process_command(); blheli.state = BLHELI_IDLE; msp.state = MSP_IDLE; } } else if (msp.state == MSP_COMMAND_RECEIVED) { if (msp.packetType == MSP_PACKET_COMMAND) { valid_packet = true; last_valid_ms = AP_HAL::millis(); msp_process_command(); } msp.state = MSP_IDLE; blheli.state = BLHELI_IDLE; } return valid_packet; } /* protocol handler for detecting BLHeli input */ bool AP_BLHeli::protocol_handler(uint8_t b, AP_HAL::UARTDriver *_uart) { uart = _uart; return process_input(b); } /* update BLHeli Used to install protocol handler */ void AP_BLHeli::update(void) { if (initialised && serial_started && AP_HAL::millis() - last_valid_ms > 4000) { // we're not processing requests any more, shutdown serial // output hal.rcout->serial_end(); serial_started = false; } if (initialised || (channel_mask.get() == 0 && channel_auto.get() == 0)) { return; } initialised = true; if (gcs().install_alternative_protocol(MAVLINK_COMM_0, FUNCTOR_BIND_MEMBER(&AP_BLHeli::protocol_handler, bool, uint8_t, AP_HAL::UARTDriver *))) { debug("BLHeli installed"); } AP_Motors *motors = AP_Motors::get_instance(); uint16_t motors_mask = 0; if (motors) { motors_mask = motors->get_motor_mask(); } // add motors from channel mask uint16_t mask = uint16_t(channel_mask.get()) | motors_mask; for (uint8_t i=0; i<16 && num_motors < max_motors; i++) { if (mask & (1U<