#include "AP_Baro_SITL.h" #if AP_SIM_BARO_ENABLED #include <AP_HAL/AP_HAL.h> #include <AP_Vehicle/AP_Vehicle_Type.h> extern const AP_HAL::HAL& hal; /* constructor - registers instance at top Baro driver */ AP_Baro_SITL::AP_Baro_SITL(AP_Baro &baro) : _sitl(AP::sitl()), _has_sample(false), AP_Baro_Backend(baro) { if (_sitl != nullptr) { _instance = _frontend.register_sensor(); #if APM_BUILD_TYPE(APM_BUILD_ArduSub) _frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER); #endif set_bus_id(_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, 0, _instance, DEVTYPE_BARO_SITL)); hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Baro_SITL::_timer, void)); } } // adjust for board temperature warmup on start-up void AP_Baro_SITL::temperature_adjustment(float &p, float &T) { const float tsec = AP_HAL::millis() * 0.001f; const float T_sensor = T + AP::sitl()->temp_board_offset; const float tconst = AP::sitl()->temp_tconst; if (tsec < 23 * tconst) { // time which past the equation below equals T_sensor within approx. 1E-9 const float T0 = AP::sitl()->temp_start; T = T_sensor - (T_sensor - T0) * expf(-tsec / tconst); } else { T = T_sensor; } const float baro_factor = AP::sitl()->temp_baro_factor; const float Tzero = 30.0f; // start baro adjustment at 30C if (is_positive(baro_factor)) { // this produces a pressure change with temperature that // closely matches what has been observed with a ICM-20789 // barometer. A typical factor is 1.2. p -= powf(MAX(T - Tzero, 0), baro_factor); } } void AP_Baro_SITL::_timer() { // 100Hz const uint32_t now = AP_HAL::millis(); if ((now - _last_sample_time) < 10) { return; } _last_sample_time = now; float sim_alt = _sitl->state.altitude; if (_sitl->baro[_instance].disable) { // barometer is disabled return; } const auto drift_delta_t_ms = now - last_drift_delta_t_ms; last_drift_delta_t_ms = now; total_alt_drift += _sitl->baro[_instance].drift * drift_delta_t_ms * 0.001f; sim_alt += total_alt_drift; sim_alt += _sitl->baro[_instance].noise * rand_float(); // add baro glitch sim_alt += _sitl->baro[_instance].glitch; // add delay uint32_t best_time_delta = 200; // initialise large time representing buffer entry closest to current time - delay. uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay. // storing data from sensor to buffer if (now - _last_store_time >= 10) { // store data every 10 ms. _last_store_time = now; if (_store_index > _buffer_length - 1) { // reset buffer index if index greater than size of buffer _store_index = 0; } // if freezed barometer, report altitude to last recorded altitude if (_sitl->baro[_instance].freeze == 1) { sim_alt = _last_altitude; } else { _last_altitude = sim_alt; } _buffer[_store_index].data = sim_alt; // add data to current index _buffer[_store_index].time = _last_store_time; // add time_stamp to current index _store_index = _store_index + 1; // increment index } // return delayed measurement const uint32_t delayed_time = now - _sitl->baro[_instance].delay; // get time corresponding to delay // find data corresponding to delayed time in buffer for (uint8_t i = 0; i <= _buffer_length - 1; i++) { // find difference between delayed time and time stamp in buffer uint32_t time_delta = abs( (int32_t)(delayed_time - _buffer[i].time)); // if this difference is smaller than last delta, store this time if (time_delta < best_time_delta) { best_index = i; best_time_delta = time_delta; } } if (best_time_delta < 200) { // only output stored state if < 200 msec retrieval error sim_alt = _buffer[best_index].data; } #if !APM_BUILD_TYPE(APM_BUILD_ArduSub) float p, T_K; AP_Baro::get_pressure_temperature_for_alt_amsl(sim_alt, p, T_K); float T = KELVIN_TO_C(T_K); temperature_adjustment(p, T); #else float rho, delta, theta; AP_Baro::SimpleUnderWaterAtmosphere(-sim_alt * 0.001f, rho, delta, theta); float p = SSL_AIR_PRESSURE * delta; float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta); #endif // add in correction for wind effects p += wind_pressure_correction(_instance); _recent_press = p; _recent_temp = T; _has_sample = true; } // unhealthy if baro is turned off or beyond supported instances bool AP_Baro_SITL::healthy(uint8_t instance) { return _last_sample_time != 0 && !_sitl->baro[instance].disable; } // Read the sensor void AP_Baro_SITL::update(void) { if (!_has_sample) { return; } WITH_SEMAPHORE(_sem); _copy_to_frontend(_instance, _recent_press, _recent_temp); _has_sample = false; } /* return pressure correction for wind based on SIM_BARO_WCF parameters */ float AP_Baro_SITL::wind_pressure_correction(uint8_t instance) { const auto &bp = AP::sitl()->baro[instance]; // correct for static pressure position errors const Vector3f &airspeed_vec_bf = AP::sitl()->state.velocity_air_bf; float error = 0.0; const float sqx = sq(airspeed_vec_bf.x); const float sqy = sq(airspeed_vec_bf.y); const float sqz = sq(airspeed_vec_bf.z); if (is_positive(airspeed_vec_bf.x)) { error += bp.wcof_xp * sqx; } else { error += bp.wcof_xn * sqx; } if (is_positive(airspeed_vec_bf.y)) { error += bp.wcof_yp * sqy; } else { error += bp.wcof_yn * sqy; } if (is_positive(airspeed_vec_bf.z)) { error += bp.wcof_zp * sqz; } else { error += bp.wcof_zn * sqz; } return error * 0.5 * SSL_AIR_DENSITY * AP::baro()._get_air_density_ratio(); } #endif // AP_SIM_BARO_ENABLED