#include "Sub.h" /* * control_althold.pde - init and run calls for althold, flight mode */ // althold_init - initialise althold controller bool Sub::althold_init() { if(!control_check_barometer()) { return false; } // initialize vertical maximum speeds and acceleration // sets the maximum speed up and down returned by position controller attitude_control.set_throttle_out(0.75, true, 100.0); pos_control.init_z_controller(); pos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); pos_control.set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); attitude_control.relax_attitude_controllers(); // initialise position and desired velocity float pos = stopping_distance(); float zero = 0; pos_control.input_pos_vel_accel_z(pos, zero, zero); if(prev_control_mode != control_mode_t::STABILIZE) { last_roll = 0; last_pitch = 0; } last_pilot_heading = ahrs.yaw_sensor; last_input_ms = AP_HAL::millis(); return true; } float Sub::stopping_distance() { const float curr_pos_z = inertial_nav.get_position().z; float curr_vel_z = inertial_nav.get_velocity().z; float distance = - (curr_vel_z * curr_vel_z) / (2 * g.pilot_accel_z); return curr_pos_z + distance; } void Sub::handle_attitude() { uint32_t tnow = AP_HAL::millis(); // initialize vertical speeds and acceleration pos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // get pilot desired lean angles float target_roll, target_pitch, target_yaw; // Check if set_attitude_target_no_gps is valid if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) { Quaternion( set_attitude_target_no_gps.packet.q ).to_euler( target_roll, target_pitch, target_yaw ); target_roll = 100 * degrees(target_roll); target_pitch = 100 * degrees(target_pitch); target_yaw = 100 * degrees(target_yaw); last_roll = target_roll; last_pitch = target_pitch; last_pilot_heading = target_yaw; attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, target_yaw, true); } else { // If we don't have a mavlink attitude target, we use the pilot's input instead get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max()); target_yaw = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (abs(target_roll) > 50 || abs(target_pitch) > 50 || abs(target_yaw) > 50) { last_roll = ahrs.roll_sensor; last_pitch = ahrs.pitch_sensor; last_pilot_heading = ahrs.yaw_sensor; last_input_ms = tnow; attitude_control.input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); } else if (tnow < last_input_ms + 250) { // just brake for a few mooments so we don't bounce attitude_control.input_rate_bf_roll_pitch_yaw(0, 0, 0); } else { // Lock attitude attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_pilot_heading, true); } } } // althold_run - runs the althold controller // should be called at 100hz or more void Sub::althold_run() { // When unarmed, disable motors and stabilization if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle) attitude_control.set_throttle_out(0.75,true,100.0); pos_control.init_z_controller(); // initialise position and desired velocity float pos = stopping_distance(); float zero = 0; pos_control.input_pos_vel_accel_z(pos, zero, zero); last_roll = 0; last_pitch = 0; last_pilot_heading = ahrs.yaw_sensor; return; } handle_attitude(); control_depth(); } void Sub::control_depth() { // We rotate the RC inputs to the earth frame to check if the user is giving an input that would change the depth. // Output the Z controller + pilot input to all motors. Vector3f earth_frame_rc_inputs = ahrs.get_rotation_body_to_ned() * Vector3f(-channel_forward->norm_input(), -channel_lateral->norm_input(), (2.0f*(-0.5f+channel_throttle->norm_input()))); float target_climb_rate_cm_s = get_pilot_desired_climb_rate(500 + g.pilot_speed_up * earth_frame_rc_inputs.z); bool surfacing = ap.at_surface || pos_control.get_pos_target_z_cm() > g.surface_depth; float upper_speed_limit = surfacing ? 0 : g.pilot_speed_up; float lower_speed_limit = ap.at_bottom ? 0 : -get_pilot_speed_dn(); target_climb_rate_cm_s = constrain_float(target_climb_rate_cm_s, lower_speed_limit, upper_speed_limit); pos_control.set_pos_target_z_from_climb_rate_cm(target_climb_rate_cm_s); if (surfacing) { pos_control.set_alt_target_with_slew(MIN(pos_control.get_pos_target_z_cm(), g.surface_depth - 5.0f)); // set target to 5 cm below surface level } else if (ap.at_bottom) { pos_control.set_alt_target_with_slew(MAX(inertial_nav.get_altitude() + 10.0f, pos_control.get_pos_target_z_cm())); // set target to 10 cm above bottom } pos_control.update_z_controller(); // Read the output of the z controller and rotate it so it always points up Vector3f throttle_vehicle_frame = ahrs.get_rotation_body_to_ned().transposed() * Vector3f(0, 0, motors.get_throttle_in_bidirectional()); //TODO: scale throttle with the ammount of thrusters in the given direction float raw_throttle_factor = (ahrs.get_rotation_body_to_ned() * Vector3f(0, 0, 1.0)).xy().length(); motors.set_throttle(throttle_vehicle_frame.z + raw_throttle_factor * channel_throttle->norm_input()); motors.set_forward(-throttle_vehicle_frame.x + channel_forward->norm_input()); motors.set_lateral(-throttle_vehicle_frame.y + channel_lateral->norm_input()); }