/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor.
* inspired by the PX4Firmware code.
*
* @author: VĂctor Mayoral Vilches
*
* Address range 0x42 - 0x49
*/
#include
#include
#include "OpticalFlow.h"
#define PX4FLOW_DEBUG 1
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#define PX4FLOW_REG 0x16 // Measure Register 22
#define I2C_FRAME_SIZE (sizeof(i2c_frame))
#define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame))
extern const AP_HAL::HAL& hal;
AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend, AP_HAL::OwnPtr dev)
: OpticalFlow_backend(_frontend)
, _dev(std::move(dev))
{
}
void AP_OpticalFlow_Linux::init(void)
{
// only initialise once
if (initialised) {
return;
}
// take i2c bus sempahore
if (!_dev->get_semaphore()->take(200)) {
return;
}
// read from flow sensor to ensure it is not a ll40ls Lidar (which can be on 0x42)
// read I2C_FRAME_SIZE bytes, the ll40ls will error whereas the flow happily returns data
uint8_t val[I2C_FRAME_SIZE];
if (!_dev->read_registers(0, val, I2C_FRAME_SIZE)) {
goto fail;
}
// success
initialised = true;
_dev->register_periodic_callback(100000, FUNCTOR_BIND_MEMBER(&AP_OpticalFlow_Linux::timer, bool));
fail:
_dev->get_semaphore()->give();
}
bool AP_OpticalFlow_Linux::request_measurement()
{
// send measure request to sensor
return _dev->write_register(PX4FLOW_REG, 0);
}
bool AP_OpticalFlow_Linux::timer(void)
{
// request measurement
request_measurement();
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = {};
i2c_integral_frame f_integral;
// Perform the writing and reading in a single command
if (PX4FLOW_REG == 0x00) {
if (!_dev->read_registers(PX4FLOW_REG, val, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE)) {
goto fail_transfer;
}
memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE);
}
if (PX4FLOW_REG == 0x16) {
if (!_dev->read_registers(PX4FLOW_REG, val, I2C_INTEGRAL_FRAME_SIZE)) {
goto fail_transfer;
}
memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE);
}
// reduce error count
if (num_errors > 0) {
num_errors--;
}
if (_sem->take(0)) {
report.pixel_flow_x_integral = static_cast(f_integral.pixel_flow_x_integral) / 10000.0f; //convert to radians
report.pixel_flow_y_integral = static_cast(f_integral.pixel_flow_y_integral) / 10000.0f; //convert to radians
report.frame_count_since_last_readout = f_integral.frame_count_since_last_readout;
report.ground_distance_m = static_cast(f_integral.ground_distance) / 1000.0f; // convert to meters
report.quality = f_integral.qual; // 0:bad, 255 max quality
report.gyro_x_rate_integral = static_cast(f_integral.gyro_x_rate_integral) / 10000.0f; // convert to radians
report.gyro_y_rate_integral = static_cast(f_integral.gyro_y_rate_integral) / 10000.0f; // convert to radians
report.gyro_z_rate_integral = static_cast(f_integral.gyro_z_rate_integral) / 10000.0f; // convert to radians
report.integration_timespan = f_integral.integration_timespan; // microseconds
report.time_since_last_sonar_update = f_integral.sonar_timestamp; // microseconds
report.gyro_temperature = f_integral.gyro_temperature; // Temperature * 100 in centi-degrees Celsius
report.sensor_id = 0;
new_report = true;
_sem->give();
}
return true;
fail_transfer:
num_errors++;
return true;
}
// update - read latest values from sensor and fill in x,y and totals.
void AP_OpticalFlow_Linux::update(void)
{
// return immediately if not initialised or more than half of last 40 reads have failed
if (!initialised || num_errors >= 20) {
return;
}
if (!_sem->take_nonblocking()) {
return;
}
if (!new_report) {
_sem->give();
return;
}
// process
struct OpticalFlow::OpticalFlow_state state;
state.device_id = report.sensor_id;
state.surface_quality = report.quality;
if (report.integration_timespan > 0) {
const Vector2f flowScaler = _flowScaler();
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
float integralToRate = 1e6f / float(report.integration_timespan);
state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis
state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis
state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis
state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis
} else {
state.flowRate.zero();
state.bodyRate.zero();
}
// copy results to front end
_update_frontend(state);
_sem->give();
#if PX4FLOW_DEBUG
hal.console->printf("PX4FLOW id:%u qual:%u FlowRateX:%4.2f Y:%4.2f BodyRateX:%4.2f y:%4.2f\n",
(unsigned)state.device_id,
(unsigned)state.surface_quality,
(double)state.flowRate.x,
(double)state.flowRate.y,
(double)state.bodyRate.x,
(double)state.bodyRate.y);
#endif
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX