/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor. * inspired by the PX4Firmware code. * * @author: VĂ­ctor Mayoral Vilches * * Address range 0x42 - 0x49 */ #include #include #include "OpticalFlow.h" #define PX4FLOW_DEBUG 1 #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #define PX4FLOW_REG 0x16 // Measure Register 22 #define I2C_FRAME_SIZE (sizeof(i2c_frame)) #define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame)) extern const AP_HAL::HAL& hal; AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend, AP_HAL::OwnPtr dev) : OpticalFlow_backend(_frontend) , _dev(std::move(dev)) { } void AP_OpticalFlow_Linux::init(void) { // only initialise once if (initialised) { return; } // take i2c bus sempahore if (!_dev->get_semaphore()->take(200)) { return; } // read from flow sensor to ensure it is not a ll40ls Lidar (which can be on 0x42) // read I2C_FRAME_SIZE bytes, the ll40ls will error whereas the flow happily returns data uint8_t val[I2C_FRAME_SIZE]; if (!_dev->read_registers(0, val, I2C_FRAME_SIZE)) { goto fail; } // success initialised = true; _dev->register_periodic_callback(100000, FUNCTOR_BIND_MEMBER(&AP_OpticalFlow_Linux::timer, bool)); fail: _dev->get_semaphore()->give(); } bool AP_OpticalFlow_Linux::request_measurement() { // send measure request to sensor return _dev->write_register(PX4FLOW_REG, 0); } bool AP_OpticalFlow_Linux::timer(void) { // request measurement request_measurement(); uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = {}; i2c_integral_frame f_integral; // Perform the writing and reading in a single command if (PX4FLOW_REG == 0x00) { if (!_dev->read_registers(PX4FLOW_REG, val, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE)) { goto fail_transfer; } memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); } if (PX4FLOW_REG == 0x16) { if (!_dev->read_registers(PX4FLOW_REG, val, I2C_INTEGRAL_FRAME_SIZE)) { goto fail_transfer; } memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); } // reduce error count if (num_errors > 0) { num_errors--; } if (_sem->take(0)) { report.pixel_flow_x_integral = static_cast(f_integral.pixel_flow_x_integral) / 10000.0f; //convert to radians report.pixel_flow_y_integral = static_cast(f_integral.pixel_flow_y_integral) / 10000.0f; //convert to radians report.frame_count_since_last_readout = f_integral.frame_count_since_last_readout; report.ground_distance_m = static_cast(f_integral.ground_distance) / 1000.0f; // convert to meters report.quality = f_integral.qual; // 0:bad, 255 max quality report.gyro_x_rate_integral = static_cast(f_integral.gyro_x_rate_integral) / 10000.0f; // convert to radians report.gyro_y_rate_integral = static_cast(f_integral.gyro_y_rate_integral) / 10000.0f; // convert to radians report.gyro_z_rate_integral = static_cast(f_integral.gyro_z_rate_integral) / 10000.0f; // convert to radians report.integration_timespan = f_integral.integration_timespan; // microseconds report.time_since_last_sonar_update = f_integral.sonar_timestamp; // microseconds report.gyro_temperature = f_integral.gyro_temperature; // Temperature * 100 in centi-degrees Celsius report.sensor_id = 0; new_report = true; _sem->give(); } return true; fail_transfer: num_errors++; return true; } // update - read latest values from sensor and fill in x,y and totals. void AP_OpticalFlow_Linux::update(void) { // return immediately if not initialised or more than half of last 40 reads have failed if (!initialised || num_errors >= 20) { return; } if (!_sem->take_nonblocking()) { return; } if (!new_report) { _sem->give(); return; } // process struct OpticalFlow::OpticalFlow_state state; state.device_id = report.sensor_id; state.surface_quality = report.quality; if (report.integration_timespan > 0) { const Vector2f flowScaler = _flowScaler(); float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; float integralToRate = 1e6f / float(report.integration_timespan); state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis } else { state.flowRate.zero(); state.bodyRate.zero(); } // copy results to front end _update_frontend(state); _sem->give(); #if PX4FLOW_DEBUG hal.console->printf("PX4FLOW id:%u qual:%u FlowRateX:%4.2f Y:%4.2f BodyRateX:%4.2f y:%4.2f\n", (unsigned)state.device_id, (unsigned)state.surface_quality, (double)state.flowRate.x, (double)state.flowRate.y, (double)state.bodyRate.x, (double)state.bodyRate.y); #endif } #endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX