/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#include "Rover.h"

void Rover::read_control_switch()
{
    static bool switch_debouncer;
	uint8_t switchPosition = readSwitch();
	
	// If switchPosition = 255 this indicates that the mode control channel input was out of range
	// If we get this value we do not want to change modes.
	if(switchPosition == 255) return;

    if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 100) {
        // only use signals that are less than 0.1s old.
        return;
    }

    // we look for changes in the switch position. If the
    // RST_SWITCH_CH parameter is set, then it is a switch that can be
    // used to force re-reading of the control switch. This is useful
    // when returning to the previous mode after a failsafe or fence
    // breach. This channel is best used on a momentary switch (such
    // as a spring loaded trainer switch).
	if (oldSwitchPosition != switchPosition ||
        (g.reset_switch_chan != 0 && 
         hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {

        if (switch_debouncer == false) {
            // this ensures that mode switches only happen if the
            // switch changes for 2 reads. This prevents momentary
            // spikes in the mode control channel from causing a mode
            // switch
            switch_debouncer = true;
            return;
        }

		set_mode((enum mode)modes[switchPosition].get());

		oldSwitchPosition = switchPosition;
		prev_WP = current_loc;

		// reset speed integrator
        g.pidSpeedThrottle.reset_I();
	}

    switch_debouncer = false;

}

uint8_t Rover::readSwitch(void){
    uint16_t pulsewidth = hal.rcin->read(g.mode_channel - 1);
	if (pulsewidth <= 900 || pulsewidth >= 2200) 	return 255;	// This is an error condition
	if (pulsewidth > 1230 && pulsewidth <= 1360) 	return 1;
	if (pulsewidth > 1360 && pulsewidth <= 1490) 	return 2;
	if (pulsewidth > 1490 && pulsewidth <= 1620) 	return 3;
	if (pulsewidth > 1620 && pulsewidth <= 1749) 	return 4;	// Software Manual
	if (pulsewidth >= 1750) 						return 5;	// Hardware Manual
	return 0;
}

void Rover::reset_control_switch()
{
	oldSwitchPosition = 254;
	read_control_switch();
}

#define CH_7_PWM_TRIGGER 1800

// read at 10 hz
// set this to your trainer switch
void Rover::read_trim_switch()
{
    switch ((enum ch7_option)g.ch7_option.get()) {
    case CH7_DO_NOTHING:
        break;
    case CH7_SAVE_WP:
		if (channel_learn->radio_in > CH_7_PWM_TRIGGER) {
            // switch is engaged
			ch7_flag = true;
		} else { // switch is disengaged
			if (ch7_flag) {
				ch7_flag = false;

				if (control_mode == MANUAL) {
                    hal.console->println("Erasing waypoints");
                    // if SW7 is ON in MANUAL = Erase the Flight Plan
					mission.clear();
                    if (channel_steer->control_in > 3000) {
						// if roll is full right store the current location as home
                        init_home();
                    }
					return;
				} else if (control_mode == LEARNING || control_mode == STEERING) {    
                    // if SW7 is ON in LEARNING = record the Wp

				    // create new mission command
				    AP_Mission::Mission_Command cmd = {};

				    // set new waypoint to current location
				    cmd.content.location = current_loc;

				    // make the new command to a waypoint
				    cmd.id = MAV_CMD_NAV_WAYPOINT;

				    // save command
				    if(mission.add_cmd(cmd)) {
                        hal.console->printf("Learning waypoint %u", (unsigned)mission.num_commands());
				    }
                } else if (control_mode == AUTO) {    
                    // if SW7 is ON in AUTO = set to RTL  
                    set_mode(RTL);
                }
            }
        }
        break;
    }
}