/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_HAL/AP_HAL.h> #include "AP_RangeFinder_Benewake.h" #include <AP_SerialManager/AP_SerialManager.h> #include <ctype.h> #include <AP_HAL/utility/sparse-endian.h> extern const AP_HAL::HAL& hal; #define BENEWAKE_FRAME_HEADER 0x59 #define BENEWAKE_FRAME_LENGTH 9 #define BENEWAKE_DIST_MAX_CM 32768 #define BENEWAKE_TFMINI_OUT_OF_RANGE_CM 1200 #define BENEWAKE_TF02_OUT_OF_RANGE_CM 2200 #define BENEWAKE_TF03_OUT_OF_RANGE_CM 18000 #define BENEWAKE_OUT_OF_RANGE_ADD_CM 100 // format of serial packets received from benewake lidar // // Data Bit Definition Description // ------------------------------------------------ // byte 0 Frame header 0x59 // byte 1 Frame header 0x59 // byte 2 DIST_L Distance (in cm) low 8 bits // byte 3 DIST_H Distance (in cm) high 8 bits // byte 4 STRENGTH_L Strength low 8 bits // bute 4 (TF03) (Reserved) // byte 5 STRENGTH_H Strength high 8 bits // bute 5 (TF03) (Reserved) // byte 6 (TF02) SIG Reliability in 8 levels, 7 & 8 means reliable // byte 6 (TFmini) Distance Mode 0x02 for short distance (mm), 0x07 for long distance (cm) // byte 6 (TF03) (Reserved) // byte 7 (TF02 only) TIME Exposure time in two levels 0x03 and 0x06 // byte 8 Checksum Checksum byte, sum of bytes 0 to bytes 7 /* The constructor also initialises the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_Benewake::AP_RangeFinder_Benewake(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, uint8_t serial_instance, benewake_model_type model) : AP_RangeFinder_Backend(_state, _params), model_type(model) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance)); } } /* detect if a Benewake rangefinder is connected. We'll detect by trying to take a reading on Serial. If we get a result the sensor is there. */ bool AP_RangeFinder_Benewake::detect(uint8_t serial_instance) { return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr; } // distance returned in reading_cm, signal_ok is set to true if sensor reports a strong signal bool AP_RangeFinder_Benewake::get_reading(uint16_t &reading_cm) { if (uart == nullptr) { return false; } float sum_cm = 0; uint16_t count = 0; uint16_t count_out_of_range = 0; // read any available lines from the lidar int16_t nbytes = uart->available(); while (nbytes-- > 0) { int16_t r = uart->read(); if (r < 0) { continue; } uint8_t c = (uint8_t)r; // if buffer is empty and this byte is 0x59, add to buffer if (linebuf_len == 0) { if (c == BENEWAKE_FRAME_HEADER) { linebuf[linebuf_len++] = c; } } else if (linebuf_len == 1) { // if buffer has 1 element and this byte is 0x59, add it to buffer // if not clear the buffer if (c == BENEWAKE_FRAME_HEADER) { linebuf[linebuf_len++] = c; } else { linebuf_len = 0; } } else { // add character to buffer linebuf[linebuf_len++] = c; // if buffer now has 9 items try to decode it if (linebuf_len == BENEWAKE_FRAME_LENGTH) { // calculate checksum uint8_t checksum = 0; for (uint8_t i=0; i<BENEWAKE_FRAME_LENGTH-1; i++) { checksum += linebuf[i]; } // if checksum matches extract contents if (checksum == linebuf[BENEWAKE_FRAME_LENGTH-1]) { // calculate distance uint16_t dist = ((uint16_t)linebuf[3] << 8) | linebuf[2]; if (dist >= BENEWAKE_DIST_MAX_CM) { // this reading is out of range count_out_of_range++; } else if (model_type == BENEWAKE_TFmini || model_type == BENEWAKE_TF03) { // no signal byte from TFmini so add distance to sum sum_cm += dist; count++; } else { // TF02 provides signal reliability (good = 7 or 8) if (linebuf[6] >= 7) { // add distance to sum sum_cm += dist; count++; } else { // this reading is out of range count_out_of_range++; } } } // clear buffer linebuf_len = 0; } } } if (count > 0) { // return average distance of readings reading_cm = sum_cm / count; return true; } if (count_out_of_range > 0) { // if only out of range readings return larger of // driver defined maximum range for the model and user defined max range + 1m float model_dist_max_cm = 0.0f; switch (model_type) { case BENEWAKE_TFmini: model_dist_max_cm = BENEWAKE_TFMINI_OUT_OF_RANGE_CM; break; case BENEWAKE_TF02: model_dist_max_cm = BENEWAKE_TF02_OUT_OF_RANGE_CM; break; case BENEWAKE_TF03: model_dist_max_cm = BENEWAKE_TF03_OUT_OF_RANGE_CM; break; } reading_cm = MAX(model_dist_max_cm, max_distance_cm() + BENEWAKE_OUT_OF_RANGE_ADD_CM); return true; } // no readings so return false return false; } /* update the state of the sensor */ void AP_RangeFinder_Benewake::update(void) { if (get_reading(state.distance_cm)) { // update range_valid state based on distance measured state.last_reading_ms = AP_HAL::millis(); update_status(); } else if (AP_HAL::millis() - state.last_reading_ms > 200) { set_status(RangeFinder::RangeFinder_NoData); } }