// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#if CLI_ENABLED == ENABLED

// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t	test_radio_pwm(uint8_t argc, 	const Menu::arg *argv);
static int8_t	test_radio(uint8_t argc, 		const Menu::arg *argv);
//static int8_t	test_failsafe(uint8_t argc, 	const Menu::arg *argv);
//static int8_t	test_stabilize(uint8_t argc, 	const Menu::arg *argv);
static int8_t	test_gps(uint8_t argc, 			const Menu::arg *argv);
static int8_t	test_tri(uint8_t argc, 			const Menu::arg *argv);
static int8_t	test_adc(uint8_t argc, 			const Menu::arg *argv);
static int8_t	test_imu(uint8_t argc, 			const Menu::arg *argv);
//static int8_t	test_dcm(uint8_t argc, 			const Menu::arg *argv);
//static int8_t	test_omega(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_battery(uint8_t argc, 		const Menu::arg *argv);
//static int8_t	test_nav(uint8_t argc, 			const Menu::arg *argv);

//static int8_t	test_wp_nav(uint8_t argc, 		const Menu::arg *argv);
//static int8_t	test_reverse(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_tuning(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_current(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_relay(uint8_t argc,	 	const Menu::arg *argv);
static int8_t	test_wp(uint8_t argc, 			const Menu::arg *argv);
static int8_t	test_baro(uint8_t argc, 		const Menu::arg *argv);
//static int8_t	test_mag(uint8_t argc, 			const Menu::arg *argv);
static int8_t	test_sonar(uint8_t argc, 		const Menu::arg *argv);
#ifdef OPTFLOW_ENABLED
static int8_t	test_optflow(uint8_t argc, 		const Menu::arg *argv);
#endif
//static int8_t	test_xbee(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_eedump(uint8_t argc, 		const Menu::arg *argv);
static int8_t	test_rawgps(uint8_t argc, 		const Menu::arg *argv);
//static int8_t	test_mission(uint8_t argc, 		const Menu::arg *argv);

// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
/*static int8_t	help_test(uint8_t argc, 			const Menu::arg *argv)
{
	Serial.printf_P(PSTR("\n"
						 "Commands:\n"
						 "  radio\n"
						 "  servos\n"
						 "  g_gps\n"
						 "  imu\n"
						 "  battery\n"
						 "\n"));
}*/

// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
	{"pwm",			test_radio_pwm},
	{"radio",		test_radio},
//	{"failsafe",	test_failsafe},
//	{"stabilize",	test_stabilize},
	{"gps",			test_gps},
#if HIL_MODE != HIL_MODE_ATTITUDE
	{"adc", 		test_adc},
#endif
	{"imu",			test_imu},
	//{"dcm",			test_dcm},
	//{"omega",		test_omega},
	{"battery",		test_battery},
	{"tune",		test_tuning},
	{"tri",			test_tri},
	{"current",		test_current},
	{"relay",		test_relay},
	{"waypoints",	test_wp},
	//{"nav",			test_nav},
#if HIL_MODE != HIL_MODE_ATTITUDE
	{"altitude",	test_baro},
#endif
	{"sonar",		test_sonar},
	//{"compass",		test_mag},
#ifdef OPTFLOW_ENABLED
	{"optflow",		test_optflow},
#endif
	//{"xbee",		test_xbee},
	{"eedump",		test_eedump},
	{"rawgps",		test_rawgps},
//	{"mission",		test_mission},
	//{"reverse",		test_reverse},
	//{"wp",			test_wp_nav},
};

// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);

static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
	//Serial.printf_P(PSTR("Test Mode\n\n"));
	test_menu.run();
    return 0;
}

static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
	int		i, j;

	// hexdump the EEPROM
	for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
		Serial.printf_P(PSTR("%04x:"), i);
		for (j = 0; j < 16; j++)
			Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
		Serial.println();
	}
	return(0);
}

static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(20);

		// Filters radio input - adjust filters in the radio.pde file
		// ----------------------------------------------------------
		read_radio();

		// servo Yaw
		//APM_RC.OutputCh(CH_7, g.rc_4.radio_out);

		Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
							g.rc_1.radio_in,
							g.rc_2.radio_in,
							g.rc_3.radio_in,
							g.rc_4.radio_in,
							g.rc_5.radio_in,
							g.rc_6.radio_in,
							g.rc_7.radio_in,
							g.rc_8.radio_in);

		if(Serial.available() > 0){
			return (0);
		}
	}
}

static int8_t
test_tri(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(20);

		// Filters radio input - adjust filters in the radio.pde file
		// ----------------------------------------------------------
		read_radio();
		g.rc_4.servo_out = g.rc_4.control_in;
		g.rc_4.calc_pwm();

		Serial.printf_P(PSTR("input: %d\toutput%d\n"),
							g.rc_4.control_in,
							g.rc_4.radio_out);

		APM_RC.OutputCh(CH_7, g.rc_4.radio_out);

		if(Serial.available() > 0){
			return (0);
		}
	}
}

/*
static int8_t
test_nav(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(1000);
		g_gps->ground_course = 19500;
		calc_nav_rate2(g.waypoint_speed_max);
		calc_nav_pitch_roll2();

		g_gps->ground_course = 28500;
		calc_nav_rate2(g.waypoint_speed_max);
		calc_nav_pitch_roll2();

		g_gps->ground_course = 1500;
		calc_nav_rate2(g.waypoint_speed_max);
		calc_nav_pitch_roll2();

		g_gps->ground_course = 10500;
		calc_nav_rate2(g.waypoint_speed_max);
		calc_nav_pitch_roll2();


		//if(Serial.available() > 0){
			return (0);
		//}
	}
}
*/

static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(20);
		read_radio();


		Serial.printf_P(PSTR("IN  1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
							g.rc_1.control_in,
							g.rc_2.control_in,
							g.rc_3.control_in,
							g.rc_4.control_in,
							g.rc_5.control_in,
							g.rc_6.control_in,
							g.rc_7.control_in);

		//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));

		/*Serial.printf_P(PSTR(	"min: %d"
								"\t in: %d"
								"\t pwm_in: %d"
								"\t sout: %d"
								"\t pwm_out %d\n"),
								g.rc_3.radio_min,
								g.rc_3.control_in,
								g.rc_3.radio_in,
								g.rc_3.servo_out,
								g.rc_3.pwm_out
								);
		*/
		if(Serial.available() > 0){
			return (0);
		}
	}
}

/*
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{

	#if THROTTLE_FAILSAFE
	byte fail_test;
	print_hit_enter();
	for(int i = 0; i < 50; i++){
		delay(20);
		read_radio();
	}

	oldSwitchPosition = readSwitch();

	Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
	while(g.rc_3.control_in > 0){
		delay(20);
		read_radio();
	}

	while(1){
		delay(20);
		read_radio();

		if(g.rc_3.control_in > 0){
			Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in);
			fail_test++;
		}

		if(oldSwitchPosition != readSwitch()){
			Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
			Serial.println(flight_mode_strings[readSwitch()]);
			fail_test++;
		}

		if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){
			Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in);
			Serial.println(flight_mode_strings[readSwitch()]);
			fail_test++;
		}

		if(fail_test > 0){
			return (0);
		}
		if(Serial.available() > 0){
			Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
			return (0);
		}
	}
	#else
		return (0);
	#endif
}
*/

/*static int8_t
test_stabilize(uint8_t argc, const Menu::arg *argv)
{
	static byte ts_num;


	print_hit_enter();
	delay(1000);

	// setup the radio
	// ---------------
	init_rc_in();

	control_mode = STABILIZE;
	Serial.printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP());
	Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);

	motor_auto_armed 	= false;
	motor_armed 		= true;

	while(1){
		// 50 hz
		if (millis() - fast_loopTimer > 19) {
			delta_ms_fast_loop 	= millis() - fast_loopTimer;
			fast_loopTimer		= millis();
			G_Dt 				= (float)delta_ms_fast_loop / 1000.f;

			if(g.compass_enabled){
				medium_loopCounter++;
				if(medium_loopCounter == 5){
					compass.read();		 				// Read magnetometer
					compass.calculate(dcm.roll, dcm.pitch);		// Calculate heading
					compass.null_offsets(dcm.get_dcm_matrix());
					medium_loopCounter = 0;
				}
			}

			// for trim features
			read_trim_switch();

			// Filters radio input - adjust filters in the radio.pde file
			// ----------------------------------------------------------
			read_radio();

			// IMU
			// ---
			read_AHRS();

			// allow us to zero out sensors with control switches
			if(g.rc_5.control_in < 600){
				dcm.roll_sensor = dcm.pitch_sensor = 0;
			}

			// custom code/exceptions for flight modes
			// ---------------------------------------
			update_current_flight_mode();

			// write out the servo PWM values
			// ------------------------------
			set_servos_4();

			ts_num++;
			if (ts_num > 10){
				ts_num = 0;
				Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
					(int)(dcm.roll_sensor/100),
					(int)(dcm.pitch_sensor/100),
					g.rc_1.pwm_out);

				print_motor_out();
			}
			// R: 1417,  L: 1453  F: 1453  B: 1417

			//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
			//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));

			if(Serial.available() > 0){
				if(g.compass_enabled){
					compass.save_offsets();
					report_compass();
				}
				return (0);
			}

		}
	}
}
*/
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	Serial.printf_P(PSTR("ADC\n"));
	delay(1000);

	while(1){
		for(int i = 0; i < 9; i++){
			Serial.printf_P(PSTR("%u,"),adc.Ch(i));
		}
		Serial.println();
		delay(20);
		if(Serial.available() > 0){
			return (0);
		}
	}
}
#endif

static int8_t
test_imu(uint8_t argc, const Menu::arg *argv)
{
	//Serial.printf_P(PSTR("Calibrating."));

	//dcm.kp_yaw(0.02);
	//dcm.ki_yaw(0);

	report_imu();
	imu.init_gyro();
	report_imu();

	print_hit_enter();
	delay(1000);

	//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw;
	fast_loopTimer = millis();

	while(1){
		//delay(20);
		if (millis() - fast_loopTimer >=20) {

			// IMU
			// ---
			read_AHRS();

			//Vector3f accels 	= imu.get_accel();
			//Vector3f gyros 		= imu.get_gyro();
			//Vector3f accel_filt	= imu.get_accel_filtered();
			//accels_rot 	= dcm.get_dcm_matrix() * accel_filt;


			medium_loopCounter++;

			if(medium_loopCounter == 4){
				update_trig();
			}

			if(medium_loopCounter == 1){
				//read_radio();
				medium_loopCounter = 0;
				//tuning();
				//dcm.kp_roll_pitch((float)g.rc_6.control_in / 2000.0);

				/*
				Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld, kp:%1.4f, kp:%1.4f \n"),
								dcm.roll_sensor,
								dcm.pitch_sensor,
								dcm.yaw_sensor,
								dcm.kp_roll_pitch(),
								(float)g.rc_6.control_in / 2000.0);
				*/
				Serial.printf_P(PSTR("%ld, %ld, %ld,  |  %ld, %ld, %ld\n"),
								dcm.roll_sensor,
								dcm.pitch_sensor,
								dcm.yaw_sensor,
								(long)(degrees(omega.x) * 100.0),
								(long)(degrees(omega.y) * 100.0),
								(long)(degrees(omega.z) * 100.0));

				if(g.compass_enabled){
					compass.read();		 				// Read magnetometer
					compass.calculate(dcm.get_dcm_matrix());
				}
			}

			// We are using the IMU
			// ---------------------
			/*
			Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t"
								 "G: %4.4f, %4.4f, %4.4f\t"),
								accels.x, accels.y, accels.z,
								gyros.x,  gyros.y,  gyros.z);
			*/
			/*
			Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"),
								cos_pitch_x,
								sin_pitch_y,
								cos_roll_x,
								sin_roll_y,
								cos_yaw_x,	// x
								sin_yaw_y);	// y
			//*/
			//Log_Write_Raw();
		}
		if(Serial.available() > 0){
			return (0);
		}
	}
}

static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(333);

		// Blink GPS LED if we don't have a fix
		// ------------------------------------
		update_GPS_light();

		g_gps->update();

		if (g_gps->new_data){
			Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
					g_gps->latitude,
					g_gps->longitude,
					g_gps->altitude/100,
					g_gps->num_sats);
			g_gps->new_data = false;
		}else{
			Serial.print(".");
		}
		if(Serial.available() > 0){
			return (0);
		}
	}
}

/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);
	Serial.printf_P(PSTR("Gyro | Accel\n"));
	Vector3f 	_cam_vector;
	Vector3f 	_out_vector;

	G_Dt = .02;

	while(1){
		for(byte i = 0; i <= 50; i++){
			delay(20);
			// IMU
			// ---
			read_AHRS();
		}

		Matrix3f temp = dcm.get_dcm_matrix();
		Matrix3f temp_t = dcm.get_dcm_transposed();

		Serial.printf_P(PSTR("dcm\n"
							 "%4.4f \t %4.4f \t %4.4f \n"
							 "%4.4f \t %4.4f \t %4.4f \n"
							 "%4.4f \t %4.4f \t %4.4f \n\n"),
							temp.a.x, temp.a.y, temp.a.z,
							temp.b.x, temp.b.y, temp.b.z,
							temp.c.x, temp.c.y, temp.c.z);

		int _pitch 		= degrees(-asin(temp.c.x));
		int _roll 		= degrees(atan2(temp.c.y, temp.c.z));
		int _yaw 		= degrees(atan2(temp.b.x, temp.a.x));
		Serial.printf_P(PSTR(	"angles\n"
								"%d \t %d \t %d\n\n"),
								_pitch,
								_roll,
								_yaw);

		//_out_vector = _cam_vector * temp;
		//Serial.printf_P(PSTR(	"cam\n"
		//						"%d \t %d \t %d\n\n"),
		//						(int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);

		if(Serial.available() > 0){
			return (0);
		}
	}
}
*/
/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);
	Serial.printf_P(PSTR("Gyro | Accel\n"));
	delay(1000);

	while(1){
		Vector3f accels = dcm.get_accel();
		Serial.print("accels.z:");
		Serial.print(accels.z);
		Serial.print("omega.z:");
		Serial.print(omega.z);
		delay(100);

		if(Serial.available() > 0){
			return (0);
		}
	}
}
*/

/*static int8_t
test_omega(uint8_t argc, const Menu::arg *argv)
{
	static byte ts_num;
	float old_yaw;

	print_hit_enter();
	delay(1000);
	Serial.printf_P(PSTR("Omega"));
	delay(1000);

	G_Dt = .02;

	while(1){
		delay(20);
		// IMU
		// ---
		read_AHRS();

		float my_oz = (dcm.yaw - old_yaw) * 50;

		old_yaw = dcm.yaw;

		ts_num++;
		if (ts_num > 2){
			ts_num = 0;
			//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
			Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
		}

		if(Serial.available() > 0){
			return (0);
		}
	}
	return (0);
}
//*/

static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if BATTERY_EVENT == 1
	for (int i = 0; i < 20; i++){
		delay(20);
		read_battery();
	}
	Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
			battery_voltage1,
			battery_voltage2,
			battery_voltage3,
			battery_voltage4);
#else
	Serial.printf_P(PSTR("Not enabled\n"));

#endif
	return (0);
}

static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();

	while(1){
		delay(200);
		read_radio();
		tuning();
		Serial.printf_P(PSTR("tune: %1.3f\n"), tuning_value);

		if(Serial.available() > 0){
			return (0);
		}
	}
}

static int8_t
test_current(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	//delta_ms_medium_loop = 100;

	while(1){
		delay(100);
		read_radio();
		read_battery();
		Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
						battery_voltage,
						current_amps,
						current_total);

		APM_RC.OutputCh(CH_1, g.rc_3.radio_in);
		APM_RC.OutputCh(CH_2, g.rc_3.radio_in);
		APM_RC.OutputCh(CH_3, g.rc_3.radio_in);
		APM_RC.OutputCh(CH_4, g.rc_3.radio_in);

		if(Serial.available() > 0){
			return (0);
		}
	}
}

static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		Serial.printf_P(PSTR("Relay on\n"));
		relay.on();
		delay(3000);
		if(Serial.available() > 0){
			return (0);
		}

		Serial.printf_P(PSTR("Relay off\n"));
		relay.off();
		delay(3000);
		if(Serial.available() > 0){
			return (0);
		}
	}
}

static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
	delay(1000);

	// save the alitude above home option
	Serial.printf_P(PSTR("Hold alt "));
	if(g.RTL_altitude < 0){
		Serial.printf_P(PSTR("\n"));
	}else{
		Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100);
	}

	Serial.printf_P(PSTR("%d wp\n"), (int)g.command_total);
	Serial.printf_P(PSTR("Hit rad: %d\n"), (int)g.waypoint_radius);
	//Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);

	report_wp();

	return (0);
}

static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) {
   print_hit_enter();
   delay(1000);
    while(1){
           if (Serial3.available()){
                   digitalWrite(B_LED_PIN, HIGH); // Blink Yellow LED if we are sending data to GPS
                   Serial1.write(Serial3.read());
                   digitalWrite(B_LED_PIN, LOW);
           }
           if (Serial1.available()){
                   digitalWrite(C_LED_PIN, HIGH); // Blink Red LED if we are receiving data from GPS
                   Serial3.write(Serial1.read());
                   digitalWrite(C_LED_PIN, LOW);
           }
           if(Serial.available() > 0){
                   return (0);
     }
   }
 }

/*static int8_t
test_xbee(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);
	Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));

	while(1){
  	    if (Serial3.available())
   			Serial3.write(Serial3.read());

		if(Serial.available() > 0){
			return (0);
		}
	}
}
*/

#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
	print_hit_enter();
	init_barometer();

	while(1){
		delay(100);
		barometer.Read();
		delay(100);
		baro_alt 		= read_barometer();

		int temp_alt	= (barometer._offset_press - barometer.RawPress) << 1; // invert and scale
		baro_rate 		= (temp_alt - old_baro_alt) * 10;
		old_baro_alt	= temp_alt;

						//			1			2	3	4	 5		 1        2				3   				4					5
		Serial.printf_P(PSTR("Baro: %dcm, rate:%d, %ld, %ld, %d\n"), baro_alt, climb_rate, barometer.RawTemp, barometer.RawPress, temp_alt);
		//Serial.printf_P(PSTR("Baro, %d, %ld, %ld, %ld, %ld\n"), baro_alt, barometer.RawTemp, barometer.RawTemp2, barometer.RawPress, barometer.RawPress2);
		if(Serial.available() > 0){
			return (0);
		}
	}
}
#endif

/*
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
	if(g.compass_enabled) {
		//Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION);

		print_hit_enter();

		while(1){
			delay(100);
			compass.read();
			compass.calculate(dcm.get_dcm_matrix());
			Vector3f maggy = compass.get_offsets();
			Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"),
						(wrap_360(ToDeg(compass.heading) * 100)) /100,
						compass.mag_x,
						compass.mag_y,
						compass.mag_z);

			if(Serial.available() > 0){
				return (0);
			}
		}
	} else {
		Serial.printf_P(PSTR("Compass: "));
		print_enabled(false);
		return (0);
	}
}
*/
/*
static int8_t
test_reverse(uint8_t argc, 		const Menu::arg *argv)
{
	print_hit_enter();
	delay(1000);

	while(1){
		delay(20);

		// Filters radio input - adjust filters in the radio.pde file
		// ----------------------------------------------------------
		g.rc_4.set_reverse(0);
		g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
		g.rc_4.servo_out = g.rc_4.control_in;
		g.rc_4.calc_pwm();
		Serial.printf_P(PSTR("PWM:%d input: %d\toutput%d "),
							APM_RC.InputCh(CH_4),
							g.rc_4.control_in,
							g.rc_4.radio_out);
		APM_RC.OutputCh(CH_6, g.rc_4.radio_out);


		g.rc_4.set_reverse(1);
		g.rc_4.set_pwm(APM_RC.InputCh(CH_4));
		g.rc_4.servo_out = g.rc_4.control_in;
		g.rc_4.calc_pwm();
		Serial.printf_P(PSTR("\trev input: %d\toutput%d\n"),
							g.rc_4.control_in,
							g.rc_4.radio_out);

		APM_RC.OutputCh(CH_7, g.rc_4.radio_out);

		if(Serial.available() > 0){
			g.rc_4.set_reverse(0);
			return (0);
		}
	}
}*/

/*
  test the sonar
 */
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
	if(g.sonar_enabled == false){
		Serial.printf_P(PSTR("Sonar disabled\n"));
		return (0);
	}

	print_hit_enter();
	while(1) {
		delay(100);

		Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read());
		//Serial.printf_P(PSTR("Sonar, %d, %d\n"), sonar.read(), sonar.raw_value);

		if(Serial.available() > 0){
			return (0);
		}
	}

	return (0);
}

#ifdef OPTFLOW_ENABLED
static int8_t
test_optflow(uint8_t argc, const Menu::arg *argv)
{
	///*
	if(g.optflow_enabled) {
		Serial.printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
		print_hit_enter();

		while(1){
			delay(200);
			optflow.read();
			Log_Write_Optflow();
			Serial.printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"),
						optflow.x,
						optflow.dx,
						optflow.y,
						optflow.dy,
						optflow.surface_quality);

			if(Serial.available() > 0){
				return (0);
			}
		}
	} else {
		Serial.printf_P(PSTR("OptFlow: "));
		print_enabled(false);
		return (0);
	}
}
#endif

/*
static int8_t
test_mission(uint8_t argc, const Menu::arg *argv)
{
	//write out a basic mission to the EEPROM

//{
//	uint8_t		id;					///< command id
//	uint8_t		options;			///< options bitmask (1<<0 = relative altitude)
//	uint8_t		p1;					///< param 1
//	int32_t		alt;				///< param 2 - Altitude in centimeters (meters * 100)
//	int32_t		lat;				///< param 3 - Lattitude * 10**7
//	int32_t		lng;				///< param 4 - Longitude * 10**7
//}

	// clear home
	{Location t = {0,   	0,      0, 		0, 		0, 			0};
	set_command_with_index(t,0);}

	// CMD										opt						pitch   	alt/cm
	{Location t = {MAV_CMD_NAV_TAKEOFF,   		WP_OPTION_RELATIVE,      0, 		100, 		0, 			0};
	set_command_with_index(t,1);}

	if (!strcmp_P(argv[1].str, PSTR("wp"))) {

		// CMD											opt
		{Location t = {MAV_CMD_NAV_WAYPOINT,  			WP_OPTION_RELATIVE,		15, 0, 0, 0};
		set_command_with_index(t,2);}
		// CMD											opt
		{Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH,   	WP_OPTION_YAW,      0, 		0, 		0,		0};
		set_command_with_index(t,3);}

		// CMD											opt
		{Location t = {MAV_CMD_NAV_LAND,				0,      0, 		0, 		0,		0};
		set_command_with_index(t,4);}

	} else {
		//2250 = 25 meteres
		// CMD										opt		p1		//alt		//NS		//WE
		{Location t = {MAV_CMD_NAV_LOITER_TIME,   	0,      10,  	0, 			0,			0}; // 19
		set_command_with_index(t,2);}

		// CMD										opt		dir		angle/deg	deg/s	relative
		{Location t = {MAV_CMD_CONDITION_YAW,		0,      1, 		360, 		60, 	1};
		set_command_with_index(t,3);}

		// CMD										opt
		{Location t = {MAV_CMD_NAV_LAND,			0,      0, 		0, 			0, 		0};
		set_command_with_index(t,4);}

	}

	g.RTL_altitude.set_and_save(300);
	g.command_total.set_and_save(4);
	g.waypoint_radius.set_and_save(3);

	test_wp(NULL, NULL);
	return (0);
}
*/

static void print_hit_enter()
{
	Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
}

/*
static void fake_out_gps()
{
	static float rads;
	g_gps->new_data 	= true;
	g_gps->fix	 	= true;

	//int length = g.rc_6.control_in;
	rads += .05;

	if (rads > 6.28){
		rads = 0;
	}

	g_gps->latitude	= 377696000;	// Y
	g_gps->longitude	= -1224319000;	// X
	g_gps->altitude	= 9000;			// meters * 100

	//next_WP.lng	 	= home.lng - length * sin(rads);   // X
	//next_WP.lat 	= home.lat + length * cos(rads);   // Y
}

*/

static void print_motor_out(){
	Serial.printf("out: R: %d,  L: %d  F: %d  B: %d\n",
				(motor_out[CH_1] 	- g.rc_3.radio_min),
				(motor_out[CH_2] 	- g.rc_3.radio_min),
				(motor_out[CH_3] 	- g.rc_3.radio_min),
				(motor_out[CH_4] 	- g.rc_3.radio_min));
}

#endif // CLI_ENABLED