/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" #define ARM_DELAY 20 // called at 10hz so 2 seconds #define DISARM_DELAY 20 // called at 10hz so 2 seconds #define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds #define LOST_VEHICLE_DELAY 10 // called at 10hz so 1 second static uint32_t auto_disarm_begin; // arm_motors_check - checks for pilot input to arm or disarm the copter // called at 10hz void Copter::arm_motors_check() { static int16_t arming_counter; // ensure throttle is down if (channel_throttle->control_in > 0) { arming_counter = 0; return; } int16_t tmp = channel_yaw->control_in; // full right if (tmp > 4000) { // increase the arming counter to a maximum of 1 beyond the auto trim counter if( arming_counter <= AUTO_TRIM_DELAY ) { arming_counter++; } // arm the motors and configure for flight if (arming_counter == ARM_DELAY && !motors.armed()) { // reset arming counter if arming fail if (!init_arm_motors(false)) { arming_counter = 0; } } // arm the motors and configure for flight if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) { auto_trim_counter = 250; // ensure auto-disarm doesn't trigger immediately auto_disarm_begin = millis(); } // full left }else if (tmp < -4000) { if (!mode_has_manual_throttle(control_mode) && !ap.land_complete) { arming_counter = 0; return; } // increase the counter to a maximum of 1 beyond the disarm delay if( arming_counter <= DISARM_DELAY ) { arming_counter++; } // disarm the motors if (arming_counter == DISARM_DELAY && motors.armed()) { init_disarm_motors(); } // Yaw is centered so reset arming counter }else{ arming_counter = 0; } } // auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds void Copter::auto_disarm_check() { uint32_t tnow_ms = millis(); uint32_t disarm_delay_ms = 1000*constrain_int16(g.disarm_delay, 0, 127); // exit immediately if we are already disarmed, or if auto // disarming is disabled if (!motors.armed() || disarm_delay_ms == 0) { auto_disarm_begin = tnow_ms; return; } #if FRAME_CONFIG == HELI_FRAME // if the rotor is still spinning, don't initiate auto disarm if (motors.rotor_speed_above_critical()) { auto_disarm_begin = tnow_ms; return; } #endif // always allow auto disarm if using interlock switch or motors are Emergency Stopped if ((ap.using_interlock && !motors.get_interlock()) || ap.motor_emergency_stop) { #if FRAME_CONFIG != HELI_FRAME // use a shorter delay if using throttle interlock switch or Emergency Stop, because it is less // obvious the copter is armed as the motors will not be spinning disarm_delay_ms /= 2; #endif } else { bool sprung_throttle_stick = (g.throttle_behavior & THR_BEHAVE_FEEDBACK_FROM_MID_STICK) != 0; bool thr_low; if (mode_has_manual_throttle(control_mode) || !sprung_throttle_stick) { thr_low = ap.throttle_zero; } else { float deadband_top = g.rc_3.get_control_mid() + g.throttle_deadzone; thr_low = g.rc_3.control_in <= deadband_top; } if (!thr_low || !ap.land_complete) { // reset timer auto_disarm_begin = tnow_ms; } } // disarm once timer expires if ((tnow_ms-auto_disarm_begin) >= disarm_delay_ms) { init_disarm_motors(); auto_disarm_begin = tnow_ms; } } // init_arm_motors - performs arming process including initialisation of barometer and gyros // returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure bool Copter::init_arm_motors(bool arming_from_gcs) { static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; // run pre-arm-checks and display failures if(!pre_arm_checks(true) || !arm_checks(true, arming_from_gcs)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // disable cpu failsafe because initialising everything takes a while failsafe_disable(); // reset battery failsafe set_failsafe_battery(false); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call update_notify a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { update_notify(); } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs_send_text(MAV_SEVERITY_INFO, "ARMING MOTORS"); #endif // Remember Orientation // -------------------- init_simple_bearing(); initial_armed_bearing = ahrs.yaw_sensor; if (ap.home_state == HOME_UNSET) { // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) ahrs.resetHeightDatum(); Log_Write_Event(DATA_EKF_ALT_RESET); } else if (ap.home_state == HOME_SET_NOT_LOCKED) { // Reset home position if it has already been set before (but not locked) set_home_to_current_location(); } calc_distance_and_bearing(); // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); hal.util->set_soft_armed(true); #if SPRAYER == ENABLED // turn off sprayer's test if on sprayer.test_pump(false); #endif // short delay to allow reading of rc inputs delay(30); // enable output to motors enable_motor_output(); // finally actually arm the motors motors.armed(true); // log arming to dataflash Log_Write_Event(DATA_ARMED); // log flight mode in case it was changed while vehicle was disarmed DataFlash.Log_Write_Mode(control_mode); // reenable failsafe failsafe_enable(); // perf monitor ignores delay due to arming perf_ignore_this_loop(); // flag exiting this function in_arm_motors = false; // return success return true; } // perform pre-arm checks and set ap.pre_arm_check flag // return true if the checks pass successfully bool Copter::pre_arm_checks(bool display_failure) { // exit immediately if already armed if (motors.armed()) { return true; } // check if motor interlock and Emergency Stop aux switches are used // at the same time. This cannot be allowed. if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict"); } return false; } // check if motor interlock aux switch is in use // if it is, switch needs to be in disabled position to arm // otherwise exit immediately. This check to be repeated, // as state can change at any time. if (ap.using_interlock && motors.get_interlock()){ if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled"); } return false; } // exit immediately if we've already successfully performed the pre-arm check if (ap.pre_arm_check) { // run gps checks because results may change and affect LED colour // no need to display failures because arm_checks will do that if the pilot tries to arm pre_arm_gps_checks(false); return true; } // succeed if pre arm checks are disabled if(g.arming_check == ARMING_CHECK_NONE) { set_pre_arm_check(true); set_pre_arm_rc_check(true); return true; } // pre-arm rc checks a prerequisite pre_arm_rc_checks(); if(!ap.pre_arm_rc_check) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated"); } return false; } // check Baro if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // barometer health check if(!barometer.all_healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy"); } return false; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref) { if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity"); } return false; } } } // check Compass if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { // check the primary compass is healthy if(!compass.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy"); } return false; } // check compass learning is on or offsets have been set if(!compass.configured()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated"); } return false; } // check for unreasonable compass offsets Vector3f offsets = compass.get_offsets(); if(offsets.length() > COMPASS_OFFSETS_MAX) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high"); } return false; } // check for unreasonable mag field length float mag_field = compass.get_field().length(); if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field"); } return false; } // check all compasses point in roughly same direction if (!compass.consistent()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses"); } return false; } } // check GPS if (!pre_arm_gps_checks(display_failure)) { return false; } #if AC_FENCE == ENABLED // check fence is initialised if(!fence.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence"); } return false; } #endif // check INS if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { // check accelerometers have been calibrated if(!ins.accel_calibrated_ok_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated"); } return false; } // check accels are healthy if(!ins.get_accel_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy"); } return false; } // check all accelerometers point in roughly same direction if (ins.get_accel_count() > 1) { const Vector3f &prime_accel_vec = ins.get_accel(); for(uint8_t i=0; i= 2) { /* for boards with 3 IMUs we only use the first two in the EKF. Allow for larger accel discrepancy for IMU3 as it may be running at a different temperature */ threshold *= 2; } if (vec_diff.length() > threshold) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers"); } return false; } } } // check gyros are healthy if(!ins.get_gyro_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy"); } return false; } // check all gyros are consistent if (ins.get_gyro_count() > 1) { for(uint8_t i=0; i PREARM_MAX_GYRO_VECTOR_DIFF) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros"); } return false; } } } // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling"); } return false; } } #if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN #ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 // check board voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage"); } return false; } } #endif #endif // check battery voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery"); } return false; } } // check various parameter values if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { // ensure ch7 and ch8 have different functions if (check_duplicate_auxsw()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options"); } return false; } // failsafe parameter checks if (g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (channel_throttle->radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check FS_THR_VALUE"); } return false; } } // lean angle parameter check if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX"); } return false; } // acro balance parameter check if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH"); } return false; } #if CONFIG_SONAR == ENABLED && OPTFLOW == ENABLED // check range finder if optflow enabled if (optflow.enabled() && !sonar.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder"); } return false; } #endif #if FRAME_CONFIG == HELI_FRAME // check helicopter parameters if (!motors.parameter_check(display_failure)) { return false; } #endif // HELI_FRAME } // check throttle is above failsafe throttle // this is near the bottom to allow other failures to be displayed before checking pilot throttle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Collective below Failsafe"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Throttle below Failsafe"); #endif } return false; } } // if we've gotten this far then pre arm checks have completed set_pre_arm_check(true); return true; } // perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag void Copter::pre_arm_rc_checks() { // exit immediately if we've already successfully performed the pre-arm rc check if( ap.pre_arm_rc_check ) { return; } // set rc-checks to success if RC checks are disabled if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { set_pre_arm_rc_check(true); return; } // check if radio has been calibrated if(!channel_throttle->radio_min.configured() && !channel_throttle->radio_max.configured()) { return; } // check channels 1 & 2 have min <= 1300 and max >= 1700 if (channel_roll->radio_min > 1300 || channel_roll->radio_max < 1700 || channel_pitch->radio_min > 1300 || channel_pitch->radio_max < 1700) { return; } // check channels 3 & 4 have min <= 1300 and max >= 1700 if (channel_throttle->radio_min > 1300 || channel_throttle->radio_max < 1700 || channel_yaw->radio_min > 1300 || channel_yaw->radio_max < 1700) { return; } // check channels 1 & 2 have trim >= 1300 and <= 1700 if (channel_roll->radio_trim < 1300 || channel_roll->radio_trim > 1700 || channel_pitch->radio_trim < 1300 || channel_pitch->radio_trim > 1700) { return; } // check channel 4 has trim >= 1300 and <= 1700 if (channel_yaw->radio_trim < 1300 || channel_yaw->radio_trim > 1700) { return; } // if we've gotten this far rc is ok set_pre_arm_rc_check(true); } // performs pre_arm gps related checks and returns true if passed bool Copter::pre_arm_gps_checks(bool display_failure) { // always check if inertial nav has started and is ready if(!ahrs.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Nav Checks"); } return false; } // check if flight mode requires GPS bool gps_required = mode_requires_GPS(control_mode); #if AC_FENCE == ENABLED // if circular fence is enabled we need GPS if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) { gps_required = true; } #endif // return true if GPS is not required if (!gps_required) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // ensure GPS is ok if (!position_ok()) { if (display_failure) { const char *reason = ahrs.prearm_failure_reason(); if (reason) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: %s", reason); } else { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Need 3D Fix"); } } AP_Notify::flags.pre_arm_gps_check = false; return false; } // check EKF compass variance is below failsafe threshold float vel_variance, pos_variance, hgt_variance, tas_variance; Vector3f mag_variance; Vector2f offset; ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset); if (mag_variance.length() >= g.fs_ekf_thresh) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF compass variance"); } return false; } // check home and EKF origin are not too far if (far_from_EKF_origin(ahrs.get_home())) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF-home variance"); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // return true immediately if gps check is disabled if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // warn about hdop separately - to prevent user confusion with no gps lock if (gps.get_hdop() > g.gps_hdop_good) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: High GPS HDOP"); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // if we got here all must be ok AP_Notify::flags.pre_arm_gps_check = true; return true; } // check ekf attitude is acceptable bool Copter::pre_arm_ekf_attitude_check() { // get ekf filter status nav_filter_status filt_status = inertial_nav.get_filter_status(); return filt_status.flags.attitude; } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm // has side-effect that logging is started bool Copter::arm_checks(bool display_failure, bool arming_from_gcs) { #if LOGGING_ENABLED == ENABLED // start dataflash start_logging(); #endif // check accels and gyro are healthy if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { if(!ins.get_accel_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Accelerometers not healthy"); } return false; } if(!ins.get_gyro_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Gyros not healthy"); } return false; } // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: gyros still settling"); } return false; } } // always check if inertial nav has started and is ready if(!ahrs.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Nav Checks"); } return false; } if(compass.is_calibrating()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Compass calibration running"); } return false; } // always check if the current mode allows arming if (!mode_allows_arming(control_mode, arming_from_gcs)) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Mode not armable"); } return false; } // always check gps if (!pre_arm_gps_checks(display_failure)) { return false; } // if we are using motor interlock switch and it's enabled, fail to arm if (ap.using_interlock && motors.get_interlock()){ gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Interlock Enabled"); return false; } // if we are not using Emergency Stop switch option, force Estop false to ensure motors // can run normally if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ set_motor_emergency_stop(false); // if we are using motor Estop switch, it must not be in Estop position } else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){ gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped"); return false; } // succeed if arming checks are disabled if (g.arming_check == ARMING_CHECK_NONE) { return true; } // baro checks if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // baro health check if (!barometer.all_healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Barometer not healthy"); } return false; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Altitude disparity"); } return false; } } #if AC_FENCE == ENABLED // check vehicle is within fence if(!fence.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: check fence"); } return false; } #endif // check lean angle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Leaning"); } return false; } } // check battery voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Check Battery"); } return false; } } // check throttle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { // check throttle is not too low - must be above failsafe throttle if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective below Failsafe"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle below Failsafe"); #endif } return false; } // check throttle is not too high - skips checks if arming from GCS in Guided if (!(arming_from_gcs && control_mode == GUIDED)) { // above top of deadband is too always high if (channel_throttle->control_in > get_takeoff_trigger_throttle()) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high"); #endif } return false; } // in manual modes throttle must be at zero if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && channel_throttle->control_in > 0) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high"); #endif } return false; } } } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Safety Switch"); } return false; } // if we've gotten this far all is ok return true; } // init_disarm_motors - disarm motors void Copter::init_disarm_motors() { // return immediately if we are already disarmed if (!motors.armed()) { return; } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs_send_text(MAV_SEVERITY_INFO, "DISARMING MOTORS"); #endif // save compass offsets learned by the EKF Vector3f magOffsets; if (ahrs.use_compass() && ahrs.getMagOffsets(magOffsets)) { compass.set_and_save_offsets(compass.get_primary(), magOffsets); } #if AUTOTUNE_ENABLED == ENABLED // save auto tuned parameters autotune_save_tuning_gains(); #endif // we are not in the air set_land_complete(true); set_land_complete_maybe(true); // log disarm to the dataflash Log_Write_Event(DATA_DISARMED); // send disarm command to motors motors.armed(false); // reset the mission mission.reset(); // suspend logging if (!(g.log_bitmask & MASK_LOG_WHEN_DISARMED)) { DataFlash.EnableWrites(false); } // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); hal.util->set_soft_armed(false); } // motors_output - send output to motors library which will adjust and send to ESCs and servos void Copter::motors_output() { // check if we are performing the motor test if (ap.motor_test) { motor_test_output(); } else { if (!ap.using_interlock){ // if not using interlock switch, set according to Emergency Stop status // where Emergency Stop is forced false during arming if Emergency Stop switch // is not used. Interlock enabled means motors run, so we must // invert motor_emergency_stop status for motors to run. motors.set_interlock(!ap.motor_emergency_stop); } motors.output(); } } // check for pilot stick input to trigger lost vehicle alarm void Copter::lost_vehicle_check() { static uint8_t soundalarm_counter; // disable if aux switch is setup to vehicle alarm as the two could interfere if (check_if_auxsw_mode_used(AUXSW_LOST_COPTER_SOUND)) { return; } // ensure throttle is down, motors not armed, pitch and roll rc at max. Note: rc1=roll rc2=pitch if (ap.throttle_zero && !motors.armed() && (channel_roll->control_in > 4000) && (channel_pitch->control_in > 4000)) { if (soundalarm_counter >= LOST_VEHICLE_DELAY) { if (AP_Notify::flags.vehicle_lost == false) { AP_Notify::flags.vehicle_lost = true; gcs_send_text(MAV_SEVERITY_NOTICE,"Locate Copter Alarm!"); } } else { soundalarm_counter++; } } else { soundalarm_counter = 0; if (AP_Notify::flags.vehicle_lost == true) { AP_Notify::flags.vehicle_lost = false; } } }