#include <AP_HAL/AP_HAL.h> #include <AP_Math/AP_Math.h> #include <AP_Terrain/AP_Terrain.h> #include "AC_Circle.h" #include <AP_Logger/AP_Logger.h> extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_Circle::var_info[] = { // @Param: RADIUS // @DisplayName: Circle Radius // @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode // @Units: cm // @Range: 0 200000 // @Increment: 100 // @User: Standard AP_GROUPINFO("RADIUS", 0, AC_Circle, _radius_parm, AC_CIRCLE_RADIUS_DEFAULT), // @Param: RATE // @DisplayName: Circle rate // @Description: Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise. Circle rate must be less than ATC_SLEW_YAW parameter. // @Units: deg/s // @Range: -90 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("RATE", 1, AC_Circle, _rate_parm, AC_CIRCLE_RATE_DEFAULT), // @Param: OPTIONS // @DisplayName: Circle options // @Description: 0:Enable or disable using the pitch/roll stick control circle mode's radius and rate // @Bitmask: 0:manual control, 1:face direction of travel, 2:Start at center rather than on perimeter, 3:Make Mount ROI the center of the circle // @User: Standard AP_GROUPINFO("OPTIONS", 2, AC_Circle, _options, 1), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_Circle::AC_Circle(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control) : _inav(inav), _ahrs(ahrs), _pos_control(pos_control) { AP_Param::setup_object_defaults(this, var_info); // init flags _flags.panorama = false; _rate = _rate_parm; } /// init - initialise circle controller setting center specifically /// set terrain_alt to true if center.z should be interpreted as an alt-above-terrain. Rate should be +ve in deg/sec for cw turn /// caller should set the position controller's x,y and z speeds and accelerations before calling this void AC_Circle::init(const Vector3p& center, bool terrain_alt, float rate_deg_per_sec) { _center = center; _terrain_alt = terrain_alt; _rate = rate_deg_per_sec; // initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) _pos_control.init_xy_controller_stopping_point(); _pos_control.init_z_controller_stopping_point(); // calculate velocities calc_velocities(true); // set start angle from position init_start_angle(false); } /// init - initialise circle controller setting center using stopping point and projecting out based on the copter's heading /// caller should set the position controller's x,y and z speeds and accelerations before calling this void AC_Circle::init() { // initialize radius and rate from params _radius = _radius_parm; _last_radius_param = _radius_parm; _rate = _rate_parm; // initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles) _pos_control.init_xy_controller_stopping_point(); _pos_control.init_z_controller_stopping_point(); // get stopping point const Vector3p& stopping_point = _pos_control.get_pos_target_cm(); // set circle center to circle_radius ahead of stopping point _center = stopping_point; if ((_options.get() & CircleOptions::INIT_AT_CENTER) == 0) { _center.x += _radius * _ahrs.cos_yaw(); _center.y += _radius * _ahrs.sin_yaw(); } _terrain_alt = false; // calculate velocities calc_velocities(true); // set starting angle from vehicle heading init_start_angle(true); } /// set circle center to a Location void AC_Circle::set_center(const Location& center) { if (center.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) { // convert Location with terrain altitude Vector2f center_xy; int32_t terr_alt_cm; if (center.get_vector_xy_from_origin_NE(center_xy) && center.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, terr_alt_cm)) { set_center(Vector3f(center_xy.x, center_xy.y, terr_alt_cm), true); } else { // failed to convert location so set to current position and log error set_center(_inav.get_position_neu_cm(), false); LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_CIRCLE_INIT); } } else { // convert Location with alt-above-home, alt-above-origin or absolute alt Vector3f circle_center_neu; if (!center.get_vector_from_origin_NEU(circle_center_neu)) { // default to current position and log error circle_center_neu = _inav.get_position_neu_cm(); LOGGER_WRITE_ERROR(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_CIRCLE_INIT); } set_center(circle_center_neu, false); } } /// set_circle_rate - set circle rate in degrees per second void AC_Circle::set_rate(float deg_per_sec) { if (!is_equal(deg_per_sec, _rate)) { _rate = deg_per_sec; } } /// set_circle_rate - set circle rate in degrees per second void AC_Circle::set_radius_cm(float radius_cm) { _radius = constrain_float(radius_cm, 0, AC_CIRCLE_RADIUS_MAX); } /// returns true if update has been run recently /// used by vehicle code to determine if get_yaw() is valid bool AC_Circle::is_active() const { return (AP_HAL::millis() - _last_update_ms < 200); } /// update - update circle controller bool AC_Circle::update(float climb_rate_cms) { calc_velocities(false); // calculate dt const float dt = _pos_control.get_dt(); // ramp angular velocity to maximum if (_angular_vel < _angular_vel_max) { _angular_vel += fabsf(_angular_accel) * dt; _angular_vel = MIN(_angular_vel, _angular_vel_max); } if (_angular_vel > _angular_vel_max) { _angular_vel -= fabsf(_angular_accel) * dt; _angular_vel = MAX(_angular_vel, _angular_vel_max); } // update the target angle and total angle travelled float angle_change = _angular_vel * dt; _angle += angle_change; _angle = wrap_PI(_angle); _angle_total += angle_change; // calculate terrain adjustments float terr_offset = 0.0f; if (_terrain_alt && !get_terrain_offset(terr_offset)) { return false; } // calculate z-axis target float target_z_cm; if (_terrain_alt) { target_z_cm = _center.z + terr_offset; } else { target_z_cm = _pos_control.get_pos_target_z_cm(); } // if the circle_radius is zero we are doing panorama so no need to update loiter target Vector3p target { _center.x, _center.y, target_z_cm }; if (!is_zero(_radius)) { // calculate target position target.x += _radius * cosf(-_angle); target.y += - _radius * sinf(-_angle); // heading is from vehicle to center of circle _yaw = get_bearing_cd(_inav.get_position_xy_cm(), _center.tofloat().xy()); if ((_options.get() & CircleOptions::FACE_DIRECTION_OF_TRAVEL) != 0) { _yaw += is_positive(_rate)?-9000.0f:9000.0f; _yaw = wrap_360_cd(_yaw); } } else { // heading is same as _angle but converted to centi-degrees _yaw = _angle * DEGX100; } // update position controller target Vector2f zero; _pos_control.input_pos_vel_accel_xy(target.xy(), zero, zero); if (_terrain_alt) { float zero2 = 0; float target_zf = target.z; _pos_control.input_pos_vel_accel_z(target_zf, zero2, 0); } else { _pos_control.set_pos_target_z_from_climb_rate_cm(climb_rate_cms); } // update position controller _pos_control.update_xy_controller(); // set update time _last_update_ms = AP_HAL::millis(); return true; } // get_closest_point_on_circle - returns closest point on the circle // circle's center should already have been set // closest point on the circle will be placed in result // result's altitude (i.e. z) will be set to the circle_center's altitude // if vehicle is at the center of the circle, the edge directly behind vehicle will be returned void AC_Circle::get_closest_point_on_circle(Vector3f &result) const { // return center if radius is zero if (_radius <= 0) { result = _center.tofloat(); return; } // get current position Vector2p stopping_point; _pos_control.get_stopping_point_xy_cm(stopping_point); // calc vector from stopping point to circle center Vector2f vec = (stopping_point - _center.xy()).tofloat(); float dist = vec.length(); // if current location is exactly at the center of the circle return edge directly behind vehicle if (is_zero(dist)) { result.x = _center.x - _radius * _ahrs.cos_yaw(); result.y = _center.y - _radius * _ahrs.sin_yaw(); result.z = _center.z; return; } // calculate closest point on edge of circle result.x = _center.x + vec.x / dist * _radius; result.y = _center.y + vec.y / dist * _radius; result.z = _center.z; } // calc_velocities - calculate angular velocity max and acceleration based on radius and rate // this should be called whenever the radius or rate are changed // initialises the yaw and current position around the circle void AC_Circle::calc_velocities(bool init_velocity) { // if we are doing a panorama set the circle_angle to the current heading if (_radius <= 0) { _angular_vel_max = ToRad(_rate); _angular_accel = MAX(fabsf(_angular_vel_max),ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); // reach maximum yaw velocity in 1 second }else{ // calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle float velocity_max = MIN(_pos_control.get_max_speed_xy_cms(), safe_sqrt(0.5f*_pos_control.get_max_accel_xy_cmss()*_radius)); // angular_velocity in radians per second _angular_vel_max = velocity_max/_radius; _angular_vel_max = constrain_float(ToRad(_rate),-_angular_vel_max,_angular_vel_max); // angular_velocity in radians per second _angular_accel = MAX(_pos_control.get_max_accel_xy_cmss()/_radius, ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); } // initialise angular velocity if (init_velocity) { _angular_vel = 0; } } // init_start_angle - sets the starting angle around the circle and initialises the angle_total // if use_heading is true the vehicle's heading will be used to init the angle causing minimum yaw movement // if use_heading is false the vehicle's position from the center will be used to initialise the angle void AC_Circle::init_start_angle(bool use_heading) { // initialise angle total _angle_total = 0; // if the radius is zero we are doing panorama so init angle to the current heading if (_radius <= 0) { _angle = _ahrs.yaw; return; } // if use_heading is true if (use_heading) { _angle = wrap_PI(_ahrs.yaw-M_PI); } else { // if we are exactly at the center of the circle, init angle to directly behind vehicle (so vehicle will backup but not change heading) const Vector3f &curr_pos = _inav.get_position_neu_cm(); if (is_equal(curr_pos.x,float(_center.x)) && is_equal(curr_pos.y,float(_center.y))) { _angle = wrap_PI(_ahrs.yaw-M_PI); } else { // get bearing from circle center to vehicle in radians float bearing_rad = atan2f(curr_pos.y-_center.y,curr_pos.x-_center.x); _angle = wrap_PI(bearing_rad); } } } // get expected source of terrain data AC_Circle::TerrainSource AC_Circle::get_terrain_source() const { // use range finder if connected if (_rangefinder_available) { return AC_Circle::TerrainSource::TERRAIN_FROM_RANGEFINDER; } #if AP_TERRAIN_AVAILABLE const AP_Terrain *terrain = AP_Terrain::get_singleton(); if ((terrain != nullptr) && terrain->enabled()) { return AC_Circle::TerrainSource::TERRAIN_FROM_TERRAINDATABASE; } else { return AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE; } #else return AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE; #endif } // get terrain's altitude (in cm above the ekf origin) at the current position (+ve means terrain below vehicle is above ekf origin's altitude) bool AC_Circle::get_terrain_offset(float& offset_cm) { // calculate offset based on source (rangefinder or terrain database) switch (get_terrain_source()) { case AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE: return false; case AC_Circle::TerrainSource::TERRAIN_FROM_RANGEFINDER: if (_rangefinder_healthy) { offset_cm = _rangefinder_terrain_offset_cm; return true; } return false; case AC_Circle::TerrainSource::TERRAIN_FROM_TERRAINDATABASE: #if AP_TERRAIN_AVAILABLE float terr_alt = 0.0f; AP_Terrain *terrain = AP_Terrain::get_singleton(); if (terrain != nullptr && terrain->height_above_terrain(terr_alt, true)) { offset_cm = _inav.get_position_z_up_cm() - (terr_alt * 100.0); return true; } #endif return false; } // we should never get here but just in case return false; } void AC_Circle::check_param_change() { if (!is_equal(_last_radius_param,_radius_parm.get())) { _radius = _radius_parm; _last_radius_param = _radius_parm; } }