/// @file AP_MotorsHeli.h /// @brief Motor control class for Traditional Heli #pragma once #include <inttypes.h> #include <AP_Common/AP_Common.h> #include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library #include <RC_Channel/RC_Channel.h> #include <SRV_Channel/SRV_Channel.h> #include "AP_Motors_Class.h" #include "AP_MotorsHeli_RSC.h" // servo output rates #define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters // default swash min and max angles and positions #define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500 #define AP_MOTORS_HELI_COLLECTIVE_MIN 1250 #define AP_MOTORS_HELI_COLLECTIVE_MAX 1750 #define AP_MOTORS_HELI_COLLECTIVE_HOVER_DEFAULT 0.5f // the estimated hover throttle, 0 ~ 1 #define AP_MOTORS_HELI_COLLECTIVE_HOVER_TC 10.0f // time constant used to update estimated hover throttle, 0 ~ 1 #define AP_MOTORS_HELI_COLLECTIVE_HOVER_MIN 0.3f // minimum possible hover throttle #define AP_MOTORS_HELI_COLLECTIVE_HOVER_MAX 0.8f // maximum possible hover throttle #define AP_MOTORS_HELI_COLLECTIVE_MIN_DEG -90.0f // minimum collective blade pitch angle in deg #define AP_MOTORS_HELI_COLLECTIVE_MAX_DEG 90.0f // maximum collective blade pitch angle in deg #define AP_MOTORS_HELI_COLLECTIVE_LAND_MIN -2.0f // minimum landed collective blade pitch angle in deg for modes using althold // flybar types #define AP_MOTORS_HELI_NOFLYBAR 0 // rsc function output channels. #define AP_MOTORS_HELI_RSC CH_8 class AP_HeliControls; /// @class AP_MotorsHeli class AP_MotorsHeli : public AP_Motors { public: /// Constructor AP_MotorsHeli( uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_Motors(speed_hz), _main_rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_RSC) { AP_Param::setup_object_defaults(this, var_info); }; // init void init(motor_frame_class frame_class, motor_frame_type frame_type) override; // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) override { _frame_class = frame_class; _frame_type = frame_type; } // set update rate to motors - a value in hertz virtual void set_update_rate( uint16_t speed_hz ) override = 0; // output_min - sets servos to neutral point with motors stopped void output_min() override; // // heli specific methods // //set turbine start flag on to initiaize starting sequence void set_turb_start(bool turb_start) { _heliflags.start_engine = turb_start; } // has_flybar - returns true if we have a mechical flybar virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; } // set_collective_for_landing - limits collective from going too low if we know we are landed void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; } // get_rsc_mode - gets the current rotor speed control method uint8_t get_rsc_mode() const { return _main_rotor.get_control_mode(); } // get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1) float get_rsc_setpoint() const { return _main_rotor._rsc_setpoint.get() * 0.01f; } // arot_man_enabled - gets contents of manual_autorotation_enabled parameter bool arot_man_enabled() const { return (_main_rotor._rsc_arot_man_enable.get() == 1) ? true : false; } // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1 virtual void set_desired_rotor_speed(float desired_speed); // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1 float get_desired_rotor_speed() const { return _main_rotor.get_desired_speed(); } // get_main_rotor_speed - estimated rotor speed when no governor or speed sensor used float get_main_rotor_speed() const { return _main_rotor.get_rotor_speed(); } // return true if the main rotor is up to speed bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; } //get rotor governor output float get_governor_output() const { return _main_rotor.get_governor_output(); } //get engine throttle output float get_control_output() const { return _main_rotor.get_control_output(); } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint32_t get_motor_mask() override; virtual void set_acro_tail(bool set) {} // ext_gyro_gain - set external gyro gain in range 0 ~ 1 virtual void ext_gyro_gain(float gain) {} // output - sends commands to the motors void output() override; // supports_yaw_passthrough virtual bool supports_yaw_passthrough() const { return false; } // update estimated throttle required to hover void update_throttle_hover(float dt); float get_throttle_hover() const override { return constrain_float(_collective_hover, AP_MOTORS_HELI_COLLECTIVE_HOVER_MIN, AP_MOTORS_HELI_COLLECTIVE_HOVER_MAX); } // accessor to get the takeoff collective flag signifying that current collective is greater than collective required to indicate takeoff bool get_takeoff_collective() const { return _heliflags.takeoff_collective; } // accessor to get the land min collective flag signifying that current collective is lower than collective required for landing bool get_below_land_min_coll() const { return _heliflags.below_land_min_coll; } // support passing init_targets_on_arming flag to greater code bool init_targets_on_arming() const override { return _heliflags.init_targets_on_arming; } // set_in_autorotation - allows main code to set when aircraft is in autorotation. void set_in_autorotation(bool autorotation) { _heliflags.in_autorotation = autorotation; } // set_enable_bailout - allows main code to set when RSC can immediately ramp engine instantly void set_enable_bailout(bool bailout) { _heliflags.enable_bailout = bailout; } // set land complete flag void set_land_complete(bool landed) { _heliflags.land_complete = landed; } //return zero lift collective position float get_coll_mid() const { return _collective_zero_thrust_pct; } // enum for heli optional features enum class HeliOption { USE_LEAKY_I = (1<<0), // 1 }; // use leaking integrator management scheme bool using_leaky_integrator() const { return heli_option(HeliOption::USE_LEAKY_I); } // Run arming checks bool arming_checks(size_t buflen, char *buffer) const override; // Tell user motor test is disabled on heli bool motor_test_checks(size_t buflen, char *buffer) const override; // output_test_seq - disabled on heli, do nothing void _output_test_seq(uint8_t motor_seq, int16_t pwm) override {}; // Helper function for param conversions to be done in motors class virtual void heli_motors_param_conversions(void) { return; } // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; protected: // manual servo modes (used for setup) enum ServoControlModes { SERVO_CONTROL_MODE_AUTOMATED = 0, SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH, SERVO_CONTROL_MODE_MANUAL_MAX, SERVO_CONTROL_MODE_MANUAL_CENTER, SERVO_CONTROL_MODE_MANUAL_MIN, SERVO_CONTROL_MODE_MANUAL_OSCILLATE, }; // output - sends commands to the motors void output_armed_stabilizing() override; void output_disarmed(); // external objects we depend upon AP_MotorsHeli_RSC _main_rotor; // main rotor // update_motor_controls - sends commands to motor controllers virtual void update_motor_control(AP_MotorsHeli_RSC::RotorControlState state) = 0; // Converts AP_Motors::SpoolState from _spool_state variable to AP_MotorsHeli_RSC::RotorControlState AP_MotorsHeli_RSC::RotorControlState get_rotor_control_state() const; // run spool logic void output_logic(); // output_to_motors - sends commands to the motors virtual void output_to_motors() = 0; // reset_flight_controls - resets all controls and scalars to flight status void reset_flight_controls(); // update the throttle input filter void update_throttle_filter() override; // move_actuators - moves swash plate and tail rotor virtual void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) = 0; // init_outputs - initialise Servo/PWM ranges and endpoints. This // method also updates the initialised flag. virtual void init_outputs() = 0; // calculate_armed_scalars - must be implemented by child classes virtual void calculate_armed_scalars() = 0; // calculate_scalars - must be implemented by child classes virtual void calculate_scalars() = 0; // servo_test - move servos through full range of movement // to be overloaded by child classes, different vehicle types would have different movement patterns virtual void servo_test() = 0; // save parameters as part of disarming void save_params_on_disarm() override; // Determines if _heli_options bit is set bool heli_option(HeliOption opt) const; // updates the takeoff collective flag indicating that current collective is greater than collective required to indicate takeoff. void update_takeoff_collective_flag(float coll_out); const char* _get_frame_string() const override { return "HELI"; } // update turbine start flag void update_turbine_start(); // Update _heliflags.rotor_runup_complete value writing log event on state change void set_rotor_runup_complete(bool new_value); // enum values for HOVER_LEARN parameter enum HoverLearn { HOVER_LEARN_DISABLED = 0, HOVER_LEARN_ONLY = 1, HOVER_LEARN_AND_SAVE = 2 }; // flags bitmask struct heliflags_type { uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up uint8_t init_targets_on_arming : 1; // 0 if targets were initialized, 1 if targets were not initialized after arming uint8_t save_rsc_mode : 1; // used to determine the rsc mode needs to be saved while disarmed uint8_t in_autorotation : 1; // true if aircraft is in autorotation uint8_t enable_bailout : 1; // true if allowing RSC to quickly ramp up engine uint8_t servo_test_running : 1; // true if servo_test is running uint8_t land_complete : 1; // true if aircraft is landed uint8_t takeoff_collective : 1; // true if collective is above 30% between H_COL_MID and H_COL_MAX uint8_t below_land_min_coll : 1; // true if collective is below H_COL_LAND_MIN uint8_t rotor_spooldown_complete : 1; // true if the rotors have spooled down completely uint8_t start_engine : 1; // true if turbine start RC option is initiated } _heliflags; // parameters AP_Int16 _cyclic_max; // Maximum cyclic angle of the swash plate in centi-degrees AP_Int16 _collective_min; // Lowest possible servo position for the swashplate AP_Int16 _collective_max; // Highest possible servo position for the swashplate AP_Int8 _servo_mode; // Pass radio inputs directly to servos during set-up through mission planner AP_Int8 _servo_test; // sets number of cycles to test servo movement on bootup AP_Float _collective_hover; // estimated collective required to hover throttle in the range 0 ~ 1 AP_Int8 _collective_hover_learn; // enable/disabled hover collective learning AP_Int8 _heli_options; // bitmask for optional features AP_Float _collective_zero_thrust_deg;// Zero thrust blade collective pitch in degrees AP_Float _collective_land_min_deg; // Minimum Landed collective blade pitch in degrees for non-manual collective modes (i.e. modes that use altitude hold) AP_Float _collective_max_deg; // Maximum collective blade pitch angle in deg that corresponds to the PWM set for maximum collective pitch (H_COL_MAX) AP_Float _collective_min_deg; // Minimum collective blade pitch angle in deg that corresponds to the PWM set for minimum collective pitch (H_COL_MIN) // internal variables float _collective_zero_thrust_pct; // collective zero thrutst parameter value converted to 0 ~ 1 range float _collective_land_min_pct; // collective land min parameter value converted to 0 ~ 1 range uint8_t _servo_test_cycle_counter = 0; // number of test cycles left to run after bootup motor_frame_type _frame_type; motor_frame_class _frame_class; };